期刊文献+

Mg_xZn_(1-x)O陶瓷靶材的制备 被引量:2

Preparation of MgO-doped ZnO(M_gxZn_(1-x)O) Ceramic Targets
原文传递
导出
摘要 采用传统的常压固相烧结方法制备了MgZnO陶瓷靶材,研究了MgO掺杂量及烧结温度对MgZnO陶瓷靶材的微观结构、表面形貌、力学性能和致密度的影响。通过XRD测定靶材相结构,SEM观察靶材的断面形貌,万能实验机测量靶材的抗弯强度,维氏显微硬度仪测量靶材的维氏硬度,阿基米德排水法测量靶材密度等方法对MgZnO靶材的性能进行了分析表征。结果表明,当掺杂量为12%、烧结温度为1 450℃时所制备的陶瓷靶材最优,其各项性能均表现良好,抗弯强度为94.56MPa,维氏硬度为250.70HV0.3,相对密度为96.65%,并在最佳条件下制备出MgO摩尔掺杂比为12%的MgZnO陶瓷靶材,采用射频磁控溅射方法,于室温条件下在石英衬底上制备了MgZnO透明薄膜,利用XRD、紫外可见分光光度计等测试手段,测量薄膜的结晶性能、光学性能,制备出的薄膜结晶性能良好,薄膜在可见光区域具有较高的透过率,平均都超过80%,适用于TFT的有源层。 MgZnO ceramic targets were prepared by sintering. The effects of the MgO-doped amount and sintering temperature on the mechanical properties, the density as well as the microstructure of the sintered target were studied. The phase structure was analyzed by X-ray diffraction, the fracture morphology was observed by SEM, the bending strength was measured by a universal testing machine, the hardness was measured by a Vickers microhardness instrument and the density was measured using the Archimedes water displacement method. The experimental results show that the optimal MgO doping amount is 12% and sintering temperature is 1 450 ℃, resulting in a bending strength of 94. 56 MPa, a Vickers hardness of 250. 70 kg/mm2 and a relative density of 96. 65% in final℃ sample, which is excellent as a target material for sputtering. The Mg-doped ZnO transparent conductive thin films were prepared on quartz substrates by RF magnetron sputtering with a MgZnO (12 % MgO) ceramic target. The average light transmittance was above 80 % in the visible light range, which is good and suitable to be an active layer of the TFT.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2014年第6期5-9,共5页 Journal of Wuhan University of Technology
基金 深圳市战略性新兴产业发展专项资金(ZDSY20120612094418467) 深圳市科技研发资金基础研究计划(JC201005280446A)
关键词 ZNO MgZnO陶瓷靶材 烧结 透明导电薄膜 性能 ZnO MgZnO ceramic target material sintering transparent and conductive film properties
  • 相关文献

参考文献1

二级参考文献9

  • 1裴志亮,张小波,王铁钢,宫骏,孙超,闻立时.ZnO:Al(ZAO)薄膜的制备与特性研究[J].金属学报,2005,41(1):84-88. 被引量:20
  • 2[1]Jaehyeong Lee,Dongjin Lee,Donggun Lim,et al.Straetural,electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell appllcations[J].Thin Solld Films,2007,515(15):6094-6098.
  • 3[4]Gheah S,Sarkar A,Chaudhuri S,et al.Grain Boundary Scattering in Aluminum-Doped ZnO Films[J].Thin Sofid Films,1991,205:64-68.
  • 4[5]Kim K H,Park K C,Ma D Y.Structural,Electrical and Optical PropoSes of Aluminum Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering[J].Appl Phys,1997,81(12):7764-7772.
  • 5[6]Minami T,Sato H,Takata S,et al.Large-Area Milky Transparent Conducting Al-doped Films Prepared by Magnetron Sputtering[J].Jpn Appl Phys,1992,31:L1106-L1109.
  • 6[10]Yoon M H,Lee S H.Solid Solubility Limits of Ga and A1 in ZnO[J].Materials Science Letters,2002,21:1703-1704.
  • 7[11]Park K C,Ma D Y,Kim K H.The Physical Properties of Al-Doped Zinc Oxide Films Prepared by rf Magnetron Sputtering[J].Thin Solid Films,1997,305:201-209.
  • 8[12]Sernelius B E,Berggren K F,Jin Z C,et al.Band-gap Tailoring of ZnO by Means of Heavy Al Doping[J].Phy Review B,1988,37(17):10244-10247.
  • 9[14]Szyszka B,Sittingex V,Jiang X.Transparent and Conductive ZnO:Al Films Deposited by Large Area Reactive Magnetton Spuuering[J].Thin Solid Films,2003,442(1):179-183.

共引文献15

同被引文献33

  • 1Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Applied Physics Letters, 2003, 82(5):733-735.
  • 2Gu Fubo,You Dan,Wang Zhihua, et al. Improvement of gas-sensing property by defect engineering in microwave-assisted synthesized 3D ZnO nanostructures[J]. Sensors and Actuators B: Chemical,2014,204:342-350.
  • 3Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties[J].Journal of Applied Physics, 2003,93(3):1624-1630.
  • 4Al-Salman,Husam S,Abdullah M J, et al.Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application[J]. Measurement,2014,59:248-257.
  • 5Tsukazaki A, Ohtomo A, Kita T,et al.Quantum hall effect in polar oxide heterostructures[J]. Science, 2007, 315(5817):1388-1391.
  • 6Poongodi G,Mohan K R,Jayavel R,et al.Influence of S doping on structural, optical and visible light photocatalytic activity of ZnO thin films[J].Ceramics International, 2014,40(9B):14733-14740.
  • 7Oba F, Nishitani S R, Isotani S, et al. Energetics of native defects in ZnO[J]. Journal of Applied Physics, 2001, 90(2):824-828.
  • 8Umezawa N, Sato M, Shiraishi K. Reduction in charged defects associated with oxygen vacancies in hafnia by magnesium incorporation:first-principles study[J]. Applied Physics Letters,2008,93(22):223104-1-223104-3.
  • 9Zamiri R,Singh B,Bdikin I,et al.Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method[J].Solid State Communications,2014,195:74-79.
  • 10Tsukazaki A,Akasaka S,Nakahara K,et al.Observation of the fractional quantum Hall effect in an oxide[J]. Nature Materials,2010,9(11):889-893.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部