期刊文献+

采用COL_(DIST)色差的一种图像检索方法研究 被引量:1

Study on An Image Retrieval Method Using COL_(DIST) Color Difference
下载PDF
导出
摘要 在基于内容的图像检索方法中,颜色相似度的计算主要采用欧氏距离。然而,欧氏距离不符合人眼的色彩识别特征,导致检索准确率偏低。本文提出了一种采用COLDIST色差公式的组合特征检索方法。首先计算图像的颜色直方图作为颜色特征、灰度共生矩阵和灰度行程矩阵作为纹理特征、泽尼克矩作为形状特征。然后采用COLDIST色差公式计算颜色相似度,并结合纹理、形状特征的相似度计算图像相似度。利用图像数据库Corel10000对本文提出的方法进行仿真测试。结果表明该方法具有更好的检索性能,有效地提高了检索的准确率。 In image retrieval method based on content, the Euclidean distance is the most widely adopted to calculate the color similarity between images. However,the Euclidean distance is not consistent with the features of color recog-nition of human,and the retrieval accuracy is low. In this paper,a retrieval method based on combination features us-ing color difference formula (COLDIST) was proposed.Firstly, color histogram was extracted as color feature, GLCM (Gray Level Co-occurrence Matrix) and GLRLM (Gray Level Run-Length Matrix) were calculated as texture fea-tures, Zernike moment was calculated as shape feature. Then, COLDIST color difference was used to measure similarity of color features which was combined with similarities of texture and shape to get the image similarity. The proposed method was simulatively tested by utilizing Corel10000 database. The results showed that the proposed method was more efficient and had better retrieval performance.
出处 《长春理工大学学报(自然科学版)》 2014年第3期99-104,108,共7页 Journal of Changchun University of Science and Technology(Natural Science Edition)
  • 相关文献

参考文献14

  • 1Zhang D. A comparative study of three region shape discriptors [Cl.Digital Image Computing Techniques and Applications, 2002: 21-22.
  • 2Liu G H,Yang J Y. Content-based image retrieval using color difference histogram[J].Pattem Recogni- tion, 2013,46 (1) : 188-198.
  • 3Kumar A R, Saravanan D. Content Based Image Retrieval Using Color Histogram[ J]. (IJCSIT) Inter- national Journal of Computer Science and Informa- tion Technologies, 2013,4( 2 ) : 242-245.
  • 4Amanatiadis, A, Kaburlasos V G, Gasteratos A, et al. Evaluation of shape descriptors for shape-based im- age retrieval [J].Image Processing, IET, 2011,5 (5) : 493-499.
  • 5Wang X Y,Yu Y J,Yang H Y. An effective im- age retrieval scheme using color, texture and shape features[J].Computer Standards & Interfaces, 2011, 33(1) :59-68.
  • 6Pele.O. Werrnan M, Improving perceptual color dif- ference using basic color terms [J].arXiv preprint arXiv: 1211.5556,2012.
  • 7Sharma. M, Singh S. Evaluation of texture methods for image analysis[C]. Intelligent Information Sys- tems Conference, The Seventh Australian and New Zealand 2001, IEEE 2001:117-121.
  • 8Gang H,Qinghe F,Xiaoxue Z,et al. Content-based image retrieval using texture structure histogram [C].3rd International Conference on Multimedia Tech- nology(ICMT-13),Atlantis Press 2013: 1356-1363.
  • 9Shrinivasacharya P, Sudhamani M V. Content based image retrieval by combining Median filter, BEMD and color teclmique[C].Proceedings of Internation- al Conference on Advances in computing Springer India, 2012: 969-975.
  • 10Huang Wenbei, He Liang, Gu Junzhong. Content based image retrieval using color histogram[J].Joumal of Donghua university(Eng, Ed), 2006,23(4) :98-102.

二级参考文献24

  • 1Teague M R. Image analysis via the general theory of moments, d. Opt. Soc. Amer., August, 1980, 70(8): 920-930.
  • 2Hu M K. Visual pattern recognition by moment invariants. IRE Tranns. Information Theory, February, 1962, 8(2): 179-187.
  • 3Teh C-H, Chin R T. On image analysis by the method of moments. IEEE Trans. Pattern Analysis Machine Intelligence, July, 1988, 10(4): 496-513.
  • 4Hatamian M. A real-time two-dimensional moment generating algorithm and its single chip implementation. IEEE Trans. Acoustics, Speech, and Signed Processing, June, 1986, ASSP-34(3): 533-546.
  • 5Al-Rawi M S. High order multi-dimensional moment generating algorithm and the efficient computation of Zernike moments. In ICASSP97, Munich, Germany, 1997, 4: 3061-3064.
  • 6Li B-C. High order moment computation of gray-level images. IEEE Trans. Image Processing, April, 1995, 4(4): 502-505.
  • 7Wong W-H, Siu W-C. Improved digital filter structure for the fast moments computation. In IEEE Proceedings Vision, Image arid Signal Processing, April, 1999, 146(2): 73-79.
  • 8Liu J G, Chan F H Y, Lan F K, Li H F. New approach to fast calculation of moments of 3-D gray level images. Parallel Computing, May, 2000, 26(6): 805-815.
  • 9Li B-C, Shen J. Fast computation of moment invariants. Pattern Recognition, 1991, 24(8): 807-813.
  • 10Li B-C, Ma S-D. Efficient computation of 3D moments. In Proceedings 12th International Conference on pattern Recognition, Israel, 1994, 1: 22-26.

共引文献7

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部