摘要
Ordered mesoporous carbon(CMK-3) was synthesized and functionalized with 2-amino-5-mercapto-1,3,4-thiadiazole groups(AMT-OCMK-3) for Hg(Ⅱ) removal from aqueous solution. The modified CMK-3 was characterized by X-ray diffraction, N2adsorption-desorption isotherm, scanning electron microscopy and Fourier transform infrared spectroscopy. The effects of solution pH, contact time, initial Hg(Ⅱ) concentration and matrix effect were studied. The adsorption data were successfully fitted with the Langmuir model, exhibiting high adsorption capacity of 450.45 mg/g of AMT-OCMK-3. In the solid-phase extraction system a series of experimental parameters such as sample flow rate, sample volume,eluent volume and concentration of the eluent solution have been investigated and established for preconcentration of Hg(Ⅱ) in aqueous solution. The results showed that the enrichment factor for Hg(Ⅱ) was 250, the precision(relative standard deviation(RSD), %) for six replicate measurements was 2.05% and the limit of detection for Hg(Ⅱ) was achieved at0.17 μg/L.
Ordered mesoporous carbon(CMK-3) was synthesized and functionalized with 2-amino-5-mercapto-1,3,4-thiadiazole groups(AMT-OCMK-3) for Hg(Ⅱ) removal from aqueous solution. The modified CMK-3 was characterized by X-ray diffraction, N2adsorption-desorption isotherm, scanning electron microscopy and Fourier transform infrared spectroscopy. The effects of solution pH, contact time, initial Hg(Ⅱ) concentration and matrix effect were studied. The adsorption data were successfully fitted with the Langmuir model, exhibiting high adsorption capacity of 450.45 mg/g of AMT-OCMK-3. In the solid-phase extraction system a series of experimental parameters such as sample flow rate, sample volume,eluent volume and concentration of the eluent solution have been investigated and established for preconcentration of Hg(Ⅱ) in aqueous solution. The results showed that the enrichment factor for Hg(Ⅱ) was 250, the precision(relative standard deviation(RSD), %) for six replicate measurements was 2.05% and the limit of detection for Hg(Ⅱ) was achieved at0.17 μg/L.
基金
the Iran National Science Foundation for the financial support to this project