期刊文献+

高强高导纳米复合材料Cu AlN的组织与力学性能研究(英文) 被引量:4

Structure and Mechanical Properties of Cu/AlN Nanocomposites with High Strength and High Conductivity
原文传递
导出
摘要 采用粉末冶金方法制备高强高导铜合金基纳米复合材料(Cu/AlN),用光学显微镜、TEM和SEM等方法研究不同工艺条件如温度、压力、复压压力及复烧温度对复合材料组织与性能的影响。结果表明:烧结后的试样密度随压力、烧结温度的升高而增大;试样布氏硬度随复压制压力和烧结温度的升高而升高;试样布氏硬度开始随着纳米AlN颗粒的含量增加而升高,但当纳米AlN颗粒质量分数大于0.5%时,复合材料的布氏硬度开始下降。试样的抗弯强度随复压制压力和烧结温度的升高而提高。 This study is aimed to adopt the powder metallurgy method to prepare copper alloy series (Cu/AlN) nanocomposites with high strength and high conductivity. Optical microscopy, transmission electron microscopy, and scanning electron microscopy were used to examine the effect of different process conditions (temperature, pressure, repressing pressure, and resintering temperature) on the structure and mechanical properties of the composites. The results show that the density of the sample increases with the increase of pressure and sintering temperature. The Brinell hardness of the sample increases with the increase of repressing pressure, sintering temperature and A1N nanoparticle content. However, when A1N nanoparticle content is 〉0.5 wt%, the Brinell hardness of the composites decreases. The bending strength of the sample increases with the increase of repressing pressure and sintering temperature.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第7期1562-1565,共4页 Rare Metal Materials and Engineering
基金 Natural Science Research Key Projects of Anhui Provincial Universities(KJ2013A227) National Natural Science Foundation of China(51104051) Innovation Fund for Small and Medium Technology Based Firms(11C26213401903)
关键词 粉末冶金法 CuZr AlN纳米复合材料 机械性能 powder metallurgy method CuZr/A1N nanocomposites mechanical property
  • 相关文献

参考文献12

  • 1Guedes M, Ferreira J M F, Rocha L A et al. national[J], 2011, 37:3631.
  • 2Casalegno V, Appendino P, Ferraris Met al clear Materials[J], 2006, 348(1-2): 102.
  • 3Ceramics Inter- Journal of Nu- Yue C F, Chen H D, Liu G Yet al. Rare Met al Materials and Engineering[J], 2012, 41 ($2): 510 (in Chinese).
  • 4Mofrad H E, Raygan S. Materials & Design[J], 2012, 41:182.
  • 5Tsukamoto M, Kajiura T, Yamamoto A. Journal of the Japan Institute of Met als[J], 2012, 76:521.
  • 6Zhao L J, Li Z B, Zhou Y W. 2011 1st International Confer- ence on Electric Power Equipment-Switching Technology[C]. Xi'an: Xi'an Jiaotong University, 2011:594.
  • 7Zuhailawati H, Jamaludin S B. Journal of Materials Engi- neering and Performance[J], 2009, 18:1258.
  • 8Glibin V P, Kuznetsov B V, Vorobyova T N. Journal of Al- loys and Compounds[J], 2005, 386(1-2): 139.
  • 9Malekan M, Shabestari S G, Zhang Wet al. Materials Science andEngineering[J], 2012, 553:10.
  • 10Pericleous K, Bojarevics V. Progress in Computational Fluid Dynamics[J], 2007, 7(2-4): 118.

同被引文献47

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部