期刊文献+

2024铝合金表面纳米化-微弧氧化复合涂层设计、表征及疲劳性能(英文) 被引量:9

Design and Characterization of SMAT-MAO Composite Coating and Its Influence on the Fatigue Property of 2024 AlAlloy
原文传递
导出
摘要 在2024铝合金表面制备纳米化-微弧氧化复合涂层,该复合涂层由底层纳米晶层及顶层陶瓷涂层构成。采用XRD、TEM和SEM研究了复合涂层的微观组织结构,并研究了表面处理对铝合金基体疲劳寿命的影响规律。顶层陶瓷涂层厚度分别为5和10μm的复合涂层试样的疲劳寿命分别提高了21.9%和23.2%,疲劳性能的改善是基体合金靠近涂层区域的纳米晶结构及残余压应力共同作用的结果;当顶层陶瓷涂层厚度增加到15μm时,由于涂层表面较大的孔径及涂层内部存在的微裂纹,导致疲劳寿命降低。 SMAT-MAO composite coating, consisting of a bottom nanocrystalline layer and a top ceramic coating, was designed and fabricated on the surface of 2024 A1 alloy. The microstructure and the phase composition of SMAT-MAO coating were exam- ined using X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The fatigue life of the treated alloy was evaluated. The results indicate that the SMAT-MAO coated samples with 5 and 10μm thick ceramic coatings exhibit improved fatigue lifetime, increasing by 21.9% and 23.2%, respectively. The improved fatigue property is attributed to the combined effect of nanocrystalline structure and the residual compressive stress induced in the substrate near the ceramic coating. With ceramic coating thickness increasing to 15μm, the fatigue lifetime of the SMAT-MAO coated sample is lightly re duced due to the protrudent degrading effect caused by the much bigger pores and pre-existing micro cracks on the coating surface.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第7期1582-1587,共6页 Rare Metal Materials and Engineering
基金 National Nature Science Foundation of China(51201008) the Fundamental Research Funds for the Central Universities(FRF-TP-12-166A) the General(2011M500241) Special Financial Grants from the China Postdoctoral Science Foundation(2012T50044)
关键词 铝合金 疲劳 微弧氧化 表面机械研磨处理 aluminum alloy fatigue microarc oxidation (MAO) surface mechanical attrition treatment (SMAT)
  • 相关文献

参考文献30

  • 1Yerokhin A L, Voevodin A, Lyubimov Vet aL Surface and Coating Technology[J], 1998, 110:140.
  • 2Yerokhin A L, Lyubimov V V, Ashitkov R V. International[J], 1998, 24:1.
  • 3Markov G A, Mironova M K, Potapova O Get al. Materials[J], 1983, 19:1000.
  • 4Ceram ics Inorganic Pushkarev O I, Sukhonos S I. Refractories and Industrial Ceramics[J], 2001, 42:15.
  • 5Godja N, Kiss N, Locker C et aL Tribology International[J], 2010, 43:1253.
  • 6Aytekin Polata, Murat Makaraci, Metin Usta. Journal of Al- loys and Compounds[J], 2010, 504:519.
  • 7Wang Zhijiang, Wu Lin, Cai Wei et al. Journal of Alloys and Compounds[J], 2010, 505:188.
  • 8Timoshenko A V, Magurova V V. Surface and Coating Tech- nology[J], 2005, 199:135.
  • 9Tang Yuming, Zhao Xuhui, Jiang Kuisheng et al. Surface and Coating Technology[J], 2010, 205:1789.
  • 10Tang Mingqi, Liu Huicong, Li Weiping et al. Materials Let- ters[J], 2011, 65:413.

同被引文献150

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部