期刊文献+

共演化博弈中的反馈机制 被引量:18

Feedback mechanism in coevolutionary games
下载PDF
导出
摘要 本文研究共演化动力学在合作演化中的作用.系统的状态由个体的策略决定.系统状态与个体的属性共同演化,形成一种反馈机制.特别是当个体能够根据博弈的结果调整社会关系时,这种调整势必影响未来的博弈.这种反馈机制在适当的时间尺度下,总是能够促进合作.首先,分析了个体策略与群组属性共演化的情形,在基于个体选择的层面上,结合溯祖理论和演化集合论,给出了区域性利他行为涌现的条件.其次,给出了结构群体中策略选择的参数判据,将两策略判据和适应动力学结合起来,发现通过调整与收益矩阵无关的参数可以实现性能控制.最后,研究了不同的角色分配方案在最后通牒博弈中对公平行为演化的影响,发现当个体的先行者优势或所配置的资源依赖于先前分配结果时,公平的分配方案及对公平的要求得以建立.共演化这种反馈机制在用博弈论解决编队控制、资源配置方案设计等实际问题时显示出广泛的应用前景. We investigate the effects of coevolutionary dynamics on the evolution of cooperation.The state of the system is described by the collective level of individual's strategies.The state coevolves with individual's property,constituting a feedback mechanism.In particular,whenever individuals are allowed to adjust their social ties in accordance with the game outcome,this adjustment is predestined to affect the payoff in the future game interactions.This feedback mechanism proves effective in promoting cooperation under appropriate time scale of strategy updating to game happening.Next,there comes the coevolutionary dynamics of individual's group affiliation and strategies.On the basis of individual-level selection,by the combination of coalescent theory and evolutionary set theory,the conditions are derived for the parochial altruism to establish.We present the criterion of strategy selection in the structured populations for multiple strategies.We apply this criterion for two-strategy setting in the framework of adaptive dynamics,and find that by adjusting the game matrix independent criterion parameters,certain performance of control systems can be realized.In the ultimatum game,whenever the first mover assignment or the size of the resource to be divided is dependent on the outcome of previous allocation rule,the fair allocation rule and the egalitarian asking demand can be stabilized.The coevolutionary dynamics,as a feedback mechanism,promises prosperous applicability in resolving the problems such as the multi-agent formation and the mechanism design in resource allocation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第7期823-836,共14页 Control Theory & Applications
基金 国家自然科学基金资助项目(61020106005 61375120)
关键词 反馈机制 演化动力学 溯祖理论 机制设计 通牒博弈 feedback mechanism evolutionary dynamics coalescent theory mechanism design ultimatum game
  • 相关文献

参考文献11

  • 1Jia Gao,Zhi Li,Te Wu,Long Wang.The coevolutionary ultimatum game[J].EPL (Europhysics Letters).2011(4)
  • 2Jaime Iranzo,Javier Román,Angel Sánchez.The spatial Ultimatum game revisited[J].Journal of Theoretical Biology.2011(1)
  • 3Aming Li,Te Wu,Rui Cong,Long Wang.One step memory of group reputation is optimal to promote cooperation in public goods games[J].EPL (Europhysics Letters).2013(3)
  • 4Te Wu,Feng Fu,Yanling Zhang,Long Wang.Adaptive tag switching reinforces the coevolution of contingent cooperation and tag diversity[J].Journal of Theoretical Biology.2013
  • 5Yanling Zhang,Te Wu,Xiaojie Chen,Guangming Xie,Long Wang.Mixed strategy under generalized public goods games[J].Journal of Theoretical Biology.2013
  • 6Rui Cong,Te Wu,Yuan-Ying Qiu,Long Wang.Time scales in evolutionary game on adaptive networks[J].Physics Letters A.2014
  • 7王龙,伏锋,陈小杰,楚天广,谢广明.演化博弈与自组织合作[J].系统科学与数学,2007,27(3):330-343. 被引量:16
  • 8Yongkui Liu,Zhi Li,Xiaojie Chen,Long Wang.Effect of community structure on coevolutionary dynamics with dynamical linking[J].Physica A: Statistical Mechanics and its Applications.2010(1)
  • 9王龙,伏锋,陈小杰,王靖,李卓政,谢广明,楚天广.复杂网络上的演化博弈[J].智能系统学报,2007,2(2):1-10. 被引量:33
  • 10Imhof Lorens A.,Nowak Martin A.Stochastic evolutionary dynamics of direct reciprocity[J].Proceedings of the Royal Society B.2010(1680)

二级参考文献33

  • 1TianguangCHU,LongWANG,TongwenCHEN.Self-organized motion in anisotropic swarms[J].控制理论与应用(英文版),2003,1(1):77-81. 被引量:7
  • 2Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314: 1560-1563.
  • 3Axelrod R. The Evolution of Cooperation. New York: Basic books, 1984.
  • 4Hofbauer J and Sigmund K. Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press, 1998.
  • 5Smith J M. Evolution and the Theory of Games. Cambridge: Cambridge University Press, 1982.
  • 6Albert R and Barabasi A L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74: 47-97.
  • 7Szabo G and Fath G. Evolutionary games on graphs. Phys. Rep., in press. [arXiv:cond-mat/0607344].
  • 8Doebeli M and Hauert C. Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game. Ecology Letters, 2005, 8: 748-766.
  • 9Nowak M A and Sigmund K. Evolutionary dynamics of biological games. Science, 2004, 303: 793-799.
  • 10Nowak M A and May R M. Evolutionary games and spatial chaos. Nature, 1992, 359: 826-829.

共引文献39

同被引文献117

引证文献18

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部