期刊文献+

面向收益最大化的云资源自适应调度 被引量:1

Maximum Profit Oriented Adaptive Scheduling of Cloud Resources
下载PDF
导出
摘要 与网格、集群等传统计算模式相比,云计算的关键优势在于为用户提供了一种利用远程计算资源的实用商业模型.云服务提供商把服务层指标转换为操作层指标,根据服务级别协议动态管理云计算资源.本文研究如何基于服务级别协议在不同的客户之间动态分配云资源池资源,以获得最大收入.借助排队论模型,把资源分配描述为基于价格机制、服务请求到达率、服务速率、可用资源等约束条件的数学极值问题,并通过拉格朗日乘子法给出了最优数学解.分别以合成数据和网络日志数据模拟请求到达率,对理论结论进行了实验验证.实验结果表明本文算法有优于相关工作. A key advantage of cloud computing is that it provides a practical business model for customers to use remote resources, which distinguishes cloud from traditional computing models such as grid computing and cluster computing. Cloud providers transform the service level metrics into operating level metrics, and control the pooled cloud resources adaptively among the differentiated cus- tomers based on Service Level Agreement ( SLA ). This paper addresses how to maximize the revenue through SLA-based dynamic resource allocation. We have formalized the resource allocation problem with Queuing Theory, in which many constrains such as pri- cing mechanisms and available resources are considered. The mathematical answer is also presented through the method of Lagrange Multiplier. Two types of experiments, whose requests come from synthetic dataset and traced dataset respectively, have been provided to validate the theoretical results. The experimental results show that our algorithms outperform related work.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第8期1717-1721,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60803111 61073208)资助 江苏省自然科学基金项目(BK2009396 BK2011692 BK20130735)资助
关键词 云计算 服务级别协议 资源分配 价格模型 cloud computing service level agreement resource allocation pricing model
  • 相关文献

参考文献21

  • 1Gong Chun-ye, Liu Jie, Zhang Qiang, et al. The characteristics of cloud computing[C]. In: Proceedings of 39th International Conference on Parallel Processing Workshops, 2010: 275-279.
  • 2Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, et al. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility[J]. Future Generation Computer Systems, 2009, 25 ( 1 ) : 599-616.
  • 3Zhu Hui-can, Tang Hong, Yang Tao. Demand-driven service dif- ferentiation in cluster-based network servers[ C]. In Proceedings of IEEE INFOCOM, 2001 : 679-688.
  • 4Michele Mazzucco. Revenue maximization problems in commercial data centers [ D ]. University of Newcastle, 2009.
  • 5The Internet traffic archive[ EB/OL], http://ita.ee. lbl. gov/ht- ml/traces, html, 2011 August.
  • 6William E Walsh, Gerald Tesauro, Jeffrey O Kephart, et al. Utility functions in autonomic systems[C]. In: Proceedings of the International Conference on Autonomic Computing, 2004: 70-77.
  • 7Rajkumar R, Lee C, Lehoczky J, et al. A resource allocation model for QoS management[C]. In: Proceedings of the 18th IEEE Real-time Systems Symposium, 1997 : 298-307.
  • 8Ghosh S, Rajkumar R, Hansen J, et al. Scalable resource alloca- tion for multi-processor QoS optimization[ C]. In: Proc. of 23rd International Conference on Distributed Computing Systems, 2003 : 174-183.
  • 9Hansen J P, Sourav Ghosh, Ragunathan Rajkumar, et al. Resource management of highly configurable tasks[C]. In: Proc. 18th International Parallel and Distributed Processing Symposium, 2004: 116.
  • 10Daniel A Menasce, Daniel Barbara, Ronald Dodge. Preserving QoS of E-commerce sites through self-tuning : a performance model approach [ C ]. In: Proc. of 3rd ACM Conference on Electronic Commerce, 2001 : 224-234.

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部