期刊文献+

微博社交网络中用户群体关系挖掘与群体行为分析 被引量:1

Community Relationship Mining and Behavior Analysis for a Microblog
下载PDF
导出
摘要 提出了一种基于权重属性的图聚类方式。该图聚类方式在图聚类的基础上,考虑了每个节点的不同属性,并根据影响度给属性分配权重,从而在依据亲密度构建的网络拓扑图上进行图聚类的修正。实验证明,该方法更符合实际的群体聚合方式。 This paper proposes a graph-clustering algorithm based on attributeinformation. The attributes (and their weights) of each node are considered in this modelwhen modifying the network topology based on intimacy. Experiments show that themodified algorithm is closer to the actual group polymerization.
机构地区 南京邮电大学
出处 《中兴通讯技术》 2014年第1期11-13,25,共4页 ZTE Technology Journal
基金 国家自然科学基金(60973140 61170276 61373135)
关键词 社群挖掘 图聚类 相似度计算 community detection graph clustering similarity calculation
  • 相关文献

参考文献8

  • 1AKCORA C G, CARMINATI B, FERRARI E.Network and profile based measures for usersimilarities on social networks [C]//Proceedings of the Information Reuse andIntegration, 2011 IEEE InternationalConference on, 3-5 Aug. 2011. Las Vegas,2011: 292-298.
  • 2SHEN L, ZHOU Y M. A New User SimilarityMeasure for Collaborative Filtering Algorithm.[C]//Proceedings of the Computer Modelingand Simulation, 2010. Second InternationalConference on, 22-24 Jan. 2010, Sanya,Hainan, 2010: 375-379. doi: 10.1109/ICCMS.2010.67.
  • 3MOHAJIREEN M, ELLEPOLA C, PERERA M,et al. Relational similarity model forsuggesting friends in online social networks[C]//Proceedings of the Industrial andInformation Systems (ICIIS), 2011 6th IEEEInternational Conference on. 16-19 Aug.2011, Kandy, 2011:334-339. doi: 10.1109/ICIINFS.2011.6038090.
  • 4温菊屏,钟勇.图聚类的算法及其在社会关系网络中的应用[J].计算机应用与软件,2012,29(2):161-163. 被引量:16
  • 5KOHOUT J, NERUDA R. Two-Phase GeneticAlgorithm for Social Network GraphsClustering [C]//Proceedings of the AdvancedInformation Networking and ApplicationsWorkshops (WAINA), 2013 27th InternationalConference on, 25-28 March 2013,Barcelona, 2013:197-202.
  • 6KENLEY E C, CHO Y R. Entropy-BasedGraph Clustering: Application to Biological andSocial Networks [C]//Proceedings of the DataMining (ICDM), 2011 IEEE 11th InternationalConference on, 11-14 Dec. 2011, Vancouver,BC, 2011:1116-1121. doi: 10.1109/ICDM.2011.64.
  • 7CRUZ J D, BOTHOREL C, POULET F. LayoutAlgorithm for Clustered Graphs to AnalyzeCommunity Interactions in Social Networks[C]//Proceedings of the Advances in SocialNetworks Analysis and Mining (ASONAM),2012 IEEE/ACM International Conference on,2012, Washington, DC, USA. 2012:704-705.doi: 10.1109/ASONAM.2012.120.
  • 8SALEM S, BANITAAN S, ALJARAH I, et al.Discovering Communities in Social NetworksUsing Topology and Attributes [C]//Proceedings of the Machine Learning and.

二级参考文献11

  • 1Venu Satuluri, Srinivasan Parthasarathy. Scalable graph clustering using stochastic flows : applications to community discovery [ C ]//KDD, Par- is, France ,2009:737 - 746.
  • 2Dongen S V. Graph Clustering by Flow Simulatiion [ D ]. Utrecht: Uni- versity of Utrecht,2000.
  • 3Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) :888 -905.
  • 4Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, et al. SCAN: a structural clustering algorithm for networks [ C]//KDD. San Jose, CA, USA, 2007 : 824 - 833.
  • 5Scott J. Social Network Analysis:A Handbook [M ]. 2nd ed. London: Sage Publications Ltd,2000.
  • 6Michelle Girvan,Newman M E J. Community structure in social and bi- ological networks [ J ]. PNAS. 2002,99 ( 12 ) :7821 - 7826.
  • 7Newman M E J. Fast algorithm for detecting community structure in net- works[J], phys REVE,2004,69(6) :066133.
  • 8Filippo Radicchi, Claudio Castellano, Federico Cecconi. Defining and i- dentifying communities in networks [ C ]// Proceeding of Nail Acad. Sci ,2004,101 (9) :2658 - 2663.
  • 9palla G, Derenyi I, Farkas I. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature,2005, 435:814 -818.
  • 10郭春燕.基于连接度的图聚类方法研究[D].太原:山西大学,2008.

共引文献15

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部