期刊文献+

蒙特卡洛算法在水动力水质模型(DYRESM-CAEDYM)参数优选中的应用 被引量:2

Application of Monte-Carlo Method in parameter optimization of hydrodynamc–water quality model(DYRESM-CAEDYM)
下载PDF
导出
摘要 针对以往生态动力学模型DYRESM-CAEDYM在应用中,多采用手动方法确定参数值时较为费时费力的缺点,引入蒙特卡洛随机抽样算法对模型参数进行自动率定。以广东省大沙河水库为例,选择率定期为2011年11月至2012年2月,利用2012年7月至2012年11月实测水质数据对模型进行验证。结果表明,在率定阶段模型对水温的模拟结果非常好,表层和底层温度的均方根误差(RMSE)分别为3.53℃和2.00℃,相对误差(RE)值均小于0.15;模型对溶氧的模拟结果良好,表层和底层的RMSE值分别为1.23 mg·L·-1和1.85 mg·L·-1,RE值分别为0.08和0.20。在验证阶段,温度表层和底层的RMSE分别为2.49℃和1.67℃,RE值均小于0.1;溶氧在表层和底层的RMSE分别为2.15 mg·L·-1和0.79 mg·L·-1,RE分别为0.17和0.11。因此,经采用蒙特卡洛方法率定后得到的大沙河水库DYRESM-CAEDYM模型参数值较为可靠。 In the previous applications of hydrodynamic-ecological model (DYRESM-CAEDYM), the parameter values were arbitrarily decided by model users. In order to improve the precision of model prediction, the Monte-Carlo sampling method was introduced into auto-calibration process of DYRESM-CAEDYM. The auto-calibration was conducted with monthly water quality measurements (temperature and dissolved oxygen) during November, 2011-February, 2012 at Dashahe Reservoir in Guangdong Province. The calibrated model was validated with the water quality data measured during July, 2012-November, 2012. The model outputs of temperature showed good agreement with the observations during the autocalibriton. The RMSE values of water temperature at the surface and bottom were 3.5℃ and 2.0℃. The RE values were less than 0.15. The model was also good at simulating dissolved oxygen with RMSE values of 1.23 mg.L-1 (surface) and 1.85 mg.L-1 (bottom) and RE values of 0.08 (surface) and 0.20 (bottom). In the validation process, the RMSE values of water temperature were 2.49 "C at the surface and 1.67℃ at the bottom. The RE values were both less than 0.1. The RMSE values of dissolved oxygen were 2.15 mg.L-1 (surface) and 0.79 mg.L-1 (bottom). The RE values for dissolved oxygen were 0.17 (surface) and 0.11 (bottom). The successful calibration for DYRESM-CAEDYM at Dashahe Reservoir suggests that the model performance might be improved with automatic calibration based on Monte-Carlo sampling method and high-speed computer.
出处 《生态科学》 CSCD 北大核心 2014年第1期38-45,共8页 Ecological Science
基金 中国科学院"百人计划择优支持项目"(YOBROB045) 水体富营养化与赤潮防治广东普通高校重点实验室开放基金项目(KLGHEI KLB07007) 国家自然科学基金项目(40871095) 广东省水利科技创新项目(201102)
关键词 DYRESM CAEDYM模型 蒙特卡洛算法 自动率定 大沙河水库 DYRESM-CAEDYM Monte-Carlo Method auto-calibration Dashahe Reservoir
  • 相关文献

参考文献19

二级参考文献116

共引文献249

同被引文献28

  • 1杨洪允,周雯,乔永民,秦云霞,陈瑞,郭佳.洱海浮游植物群落结构及其与环境因子分析[J].环境科学与技术,2021,44(7):123-132. 被引量:8
  • 2陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J].湖泊科学,2006,18(5):550-552. 被引量:235
  • 3许劲,龙腾锐.不确定性河流水质模型的应用及进展[J].中国给水排水,2007,23(16):4-8. 被引量:3
  • 4姜云超,南忠仁.不确定性水质模型及其研究进展[J].环境污染与防治,2007,29(9):713-717. 被引量:2
  • 5Sharad Kumar Jain . Development of integrated sediment rating curves using ANNs[J] . Journal of Hydraulic Engi- neering, 2001, 127(3): 181-193.
  • 6YIN Y Y . Fuzzy relation analysis for multieriteria water resources management[J] . Journal of Water Resources Planning and Management, 1999,125( 1 ) : 41-47.
  • 7WALKER W E, P H S, P V S J . Defining uncertainty a conceptual basis for uncertainty management in mod- el-based decision support[J] . Integrated Assessment, 2003, 4( 1 ) : 5-17.
  • 8Beck M B . Water quality modeling: a review of the analysis of uncertainty [J] . Water Resources Research, 1987, 23(8) : 1393-1442.
  • 9Reckhow K H . Water quality simulation modeling and uncertainty analysis for risk assessment and decision mak- ing[J]. Ecological Modelling, 1994, 72(1) : 1-20.
  • 10Melching C S, Yen B C, Wenzel H G . A reliability estimation in modeling watershed runoff with uncertainties [J] . Water Resources Research, 1990, 26(10) : 2277-2286.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部