期刊文献+

引入梯度导引似p范数约束的稀疏信道估计算法 被引量:10

Estimation algorithm for sparse channels with gradient guided p-norm like constraints
下载PDF
导出
摘要 为克服l0和l1范数约束的最小均方算法在不同信道稀疏程度下对稀疏信道估计中出现的收敛性能起伏较大等缺点,提出一种新的似p范数约束的最小均方算法,通过在最小均方算法代价函数中引入p值可变的似p范数约束以适应信道的不同稀疏程度,并在验证代价函数凸性的基础上导出p值的梯度导引寻优。最后给出仿真实验及其讨论,实验结果表明了新算法的优越性。 The 10 and II norm constrained least mean square (LMS) algorithm can effectively improve the performance of the sparse channel estimation, but the convergence performance of such algorithms will considerably vary when the channel exhibits different sparisity. A novel p-norm like constraint LMS algorithm to accommodate the various sparisity of the channels through the introducing of the variable p-value was presented. Furthermore, the gradient guided optimization of the p-value was derived. Numerical simulation results are given to demonstrate the superiority of the new algorithm.
出处 《通信学报》 EI CSCD 北大核心 2014年第7期172-177,共6页 Journal on Communications
基金 国家自然科学基金资助项目(11274259) 教育部高等学校博士点专项基金资助项目(20120121110030)~~
关键词 似p范数约束 最小均方算法 稀疏信道 p-norm like constraint LMS algorithm sparse channels
  • 相关文献

参考文献14

  • 1COTTER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans Commun,2002,50(3):374-377.
  • 2NAYLOR P A,CUI J,BROOKES M.Adaptive algorithms for sparse echo cancellation[J].Signal Processing,2006,86(6):1182-1192.
  • 3GU Y,JIN J,MEI S.L0 norm constraint LMS algorithm for sparse system identification[J].IEEE Signal Processing Letters,2009,16(9):774-777.
  • 4CHEN Y,GU Y,HERO A O.Sparse LMS for system identification[A].lnt Conf Acoast,Speech,Signal Process(ICASSP)[C].Taiwan,China,2009.3125-3128.
  • 5JIN J,GU Y,MEI S.A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework[J].IEEE J Sel Topics Signal Process,2010,4(2):409-420.
  • 6SHI K,SHIP.Adaptive sparse Volterra system identification with lo-norm penalty[J].Signal Processing,2011,91(10):2432-2436.
  • 7SHI K,SILl P.Convergence analysis of sparse LMS algorithms withll-norm penalty based on white input signal[J].Signal Processing,2010,90(12):3289-3293.
  • 8RAO B D,DELGADO K K.An aft'me scaling methodology for best basis selection[J].IEEE Trans Signal Process,1999,47(1):187-200.
  • 9SCHREIBER W F.Advanced television systems for terrestrial broad-casting:some problems and some proposed solutions[J].Proc IEEE,1995,83:958-981.
  • 10KALOUPTSIDIS N,MILEOUNIS G;BABADF B,et al.Adaptive algorithms for sparse system identification[J].Signal Processing,2011,91(8):1910-1919.

同被引文献52

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部