期刊文献+

TiO_2/石墨烯复合材料的制备与电化学性能研究

Synthesis and characterization of TiO_2/graphene composite
原文传递
导出
摘要 通过一种简易的水热法制备了TiO2纳米管,石墨烯复合材料(简称TNG)。采用XRD和SEM表征了材料的结构与形貌,并利用恒流充放电测试、循环伏安测试(CV)等手段对材料的电化学性能进行了研究。结果表明:在合成的TNG中,TiO2纳米管分布于石墨烯片层上,其纳米管的管径为50~100nm。在电流密度为10mA/g时,所制TNG的首次充放电可逆比容量为366mAh/g。即使是在1000mA/g的电流密度下,经过100次循环充放电后,TNG复合材料的可逆比容量仍有156mAh/g,库仑效率达到98.3%。合成的TNG具有良好的高倍率循环性能,适合应用于高倍率和大功率锂离子电池。 TiO2/graphene composites (term as TNG) were synthesized by a facile hydrothermal process. The structure and morphology were characterized by X-ray diffraction and scanning electron microscopy. Their electrochemistry performances were tested through cyclic voltammetry and constant current discharge/charge tests. The result shows that the TiO2 nanotubes in the TNG disperse onto the graphene sheets and the diameter of the nanotubes is 50-100 nm. The initial reversible specific capacity of the prepared TNG is 366 mAh/g at the current density of 10 mA/g. The composites exhibit good high-rate reversible specific capacity of 156 mAh/g and the coulombic efficiency of 98.3% after 100 cycles at rate of 1 000 mA/g. The excellent high-rate cycle performance makes TNG an ideal anode material for high-power, high-rate application of lithium ion batteries.
出处 《电子元件与材料》 CAS CSCD 北大核心 2014年第8期34-37,共4页 Electronic Components And Materials
基金 国家科技支撑计划资助项目(No.2012BAK26B04) 广东省科技计划资助项目(No.2010A011300041 No.2011B050300017) 广东省高等学校科技创新重点资助项目(No.粤财教〔2011〕473号)
关键词 锂离子电池 负极材料 TIO2 石墨烯 复合材料 水热法 lithium-ion battery anode material TiO2 graphene composite hydrothermal treatment
  • 相关文献

参考文献14

  • 1马萍,徐宇虹,巩桂英,张宝宏.一种新型的锂离子电池负极材料[J].电子元件与材料,2006,25(11):27-30. 被引量:4
  • 2任建国,王科,何向明,姜长印,万春荣,蒲薇华.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597-603. 被引量:23
  • 3PERERA S D, MARIANO R G, VU K, et al. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photoeatalytic activity [J]. ACS Catal, 2012, 2(6): 949-956.
  • 4CAI D, LIAN P, ZHU X, et al. High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window [J]. Electroehim Acta, 2012, 74: 65-72.
  • 5TARASCON J M, ARMAND M, Issues and challenges facing rechargeable batteries [J]. Nature, 2001, 414: 359-367.
  • 6FU L J, LIU H, LI C, et al. Eleetrode materials for lithium secondary batteries prepared by sol-gel methods [J]. Prog Mater Sei, 2005, 50: 881-928.
  • 7QIU Y, YAN K, YANG S, et al. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance [J]. Acs Nano, 2010, 4(11): 6515-6526.
  • 8SIVASHANMUGAM A, PREM K T, RENGANATHAN N G, et al. Electrochemical behavior of Ti/SnO2 mixtures for use as anode in lithium reehargeable batteries [J]. J Power Sources, 2005, 144: 197-203.
  • 9DU G, SHARMA N, PETERSON V K, et al. Br-doped Li4TisOi2 and composite TiO2 anodes for Li-ion batteries: synchrotron X-ray and in situ neutron diffraction studies [J]. Adv Funct Mater, 2011, 21(20): 3990-3997.
  • 10PARK M, WANG C: KANG Y, et al. Preparation and electrochemical properties of TiO2 nanowires for application in lithium-ion batteries [J]. Angew Chem, 2007, 46: 750.

二级参考文献156

  • 1齐智,吴锋.用于锂离子电池负极SnO_2-MCMB复合材料的研究[J].现代化工,2004,24(11):40-42. 被引量:8
  • 2Armand M, Tarascon J M. Nature, 2008, 451: 652-657.
  • 3Tarascon J M, Armand M. Nature, 2001, 414(6861): 359-367.
  • 4Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 407: 496-499.
  • 5Débart A, Dupont L, Poizot P, Leriche J B, Tarascon J M. J. Electrochem. Soc., 2001, 148(11): A1266-A1274.
  • 6Dedryvère R, Laruelle S, Grugeon P, Poizot P, Gonbeau D, Tarascon J M. Chem. Mater., 2004, 16(6): 1056-1061.
  • 7Larcher D, Masqelier C, Bonnin D, Chabre Y, Masson V, Leriche J B, Tarascon J M. J. Electrochem. Soc., 2003, 150(l): A133-A139.
  • 8Chen C H, Ding N, Wang L, Yu Y, Lieberwith I. J. Power Sources, 2009, 189: 552-556.
  • 9Grugeon S, Laruelle S, Dupont L, Tarascon J M. Solid State Sci., 2003, 5: 895-904.
  • 10Choi H C, Lee S Y, Kim S B. J. Phys. Chem. B, 2002, 106: 9252-9260.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部