摘要
针对无线局域网安全防护手段的不足,结合无线局域网介质访问控制层拒绝服务攻击的特点,设计了基于支持向量机算法的入侵检测系统。该系统利用支持向量机分类准确性高的特点,构建支持向量机最优分类超平面和分类判决函数,对网络流量进行分类识别,完成对异常流量的检测。在OPNET平台下进行无线局域网环境入侵检测仿真,仿真结果表明,该系统能有效地检测出针对无线局域网介质访问控制层的拒绝服务攻击。
For insufficient of safety protection means and characteristics of denial of service attack in MAC layer of WLAN,the paper designed an intrusion detection system based on support vector machine.The system uses characteristics of high classification accuracy of support vector machine to build hyperplane of optimal classification and classification decision function,and achieves classification and identification of network traffic,and completes detection of abnormal traffic.The intrusion detection of WLAN was simulated on OPNET platform,and the result indicates that the system can detect denial of service attack in MAC layer efficiently.
出处
《工矿自动化》
北大核心
2014年第8期67-71,共5页
Journal Of Mine Automation
基金
国家自然科学基金青年项目(61203268)