期刊文献+

强粒子束产生温稠密物质热力学状态估计 被引量:2

Thermodynamic properties of warm dense matter generated by strong particle beams
下载PDF
导出
摘要 基于能量平衡原理,结合SRIM统计方法,以铝靶为例,对重离子束和强电子束产生高温高密度物质所需的束流参数进行估计,分析各自产生温稠密物质的优缺点.结果显示,从电子辐射能损和束流利用观点来看,1~10 MeV电子束产生温稠密物质具有较好的均匀性和较高的利用率;而重离子束加载可以获得较宽区域的温稠密物质. Based on the principle of energy balance and SRIM statistical method,the parameters of heavy ion beams and strong electron beams generating warm dense matter(WDM)are presented.According to the electron radiant energy loss and beam utilization,better homogenization and higher availability were shown in the WDM generated by electron beams with the kinetic energy of 1-10MeV,and the WDM with wider range was generated by heavy ion beams.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第3期280-285,共6页 High Power Laser and Particle Beams
基金 中国工程物理研究院基金项目(2012B0101001) 冲击波物理与爆轰物理重点实验室基金项目(9140C670103130C67235)
关键词 强电子束 重离子束 温稠密物质 蒙特卡罗方法 strong electron beams heavy ion beams warm dense matter Monte-Carlo method
  • 相关文献

参考文献12

  • 1VorbergerJ,DonkoZ,TkachenkoIM,etal.Dynamicionstructurefactorofwarmdensematter[J].Physical Review Letters,2012,109:225001.
  • 2LoubeyreP,BrygooS,EggertJ,etal.Extendeddatasetfortheequationofstateofwarm densehydrogenisotopes[J].Physical Review Letters,2012,86:144115.
  • 3朱隽,江孝国,陈楠.用于温密物质研究的强流电子束加载技术[J].强激光与粒子束,2013,25(1):99-103. 被引量:5
  • 4TahirN A,DeutschC,FortovVE,etal.ProposalforthestudyofthermophysicalpropertiesofhighenergydensitymatterusingcurrentandfutureheavyionacceleratorfacilitiesatGSIDarmstadt[J].Physical Review Letters,2005,95:035001.
  • 5TahirN A,ShutovA,ZharkovAP,etal.Generationofplaneshocksusingintenseheavyionbeams:ApplicationtoRichtmyerMeshkovinstabilitygrowthstudies[J].Physical Review Letters,2011,18:032704.
  • 6HoffmannDH H,FortovVE,LomonosovIV,etal.Uniquecapabilitiesofanintenseheavyionbeamasatoolforequationofstatestudies[J].Physical of Plasmas,2002,9(9):3651-3654.
  • 7BarnardJJ,BriggsRJ,CallahanD A,etal.LBNLreport[R].UCRL-CONF-212342,2005.
  • 8BieniosekF M,BarnardJJ,FriedmanA,etal.Ion-beam-drivenwarmdensematterexperiments[J].Journal of Physics:Conference Series,2010,244:032028.
  • 9BarnardJJ,ArmijoJ,MoreR M,etal.Theoryandsimulationofwarmdensemattertargets[J].Nuclear Instrumrnts and Methods in Physics Research Section A,2007,577(1):275-283.
  • 10MurakamiM,MeyerTerVehnJ,RamisR.ThermalX-rayemissionfromion-beam-heated matter[J].Journal of X-Ray Science and Technolgy,1990,2(2):127-148.

二级参考文献16

  • 1顾援,傅思祖,黄秀光,吴江,叶君建,舒桦,马民勋,何钜华,王世绩.激光驱动高压下材料状态方程实验研究进展[J].物理,2007,36(6):465-471. 被引量:9
  • 2Lee R W, Kalantar D, Molitoris J. Warm dense matter: an overview[R]. UCRL-TR-203844, 2004.
  • 3Su J T, Goddard W A. Excited electron dynamics modeling of warm dense matter[J]. Physical Review Letters, 2007, 99:185003.
  • 4Kress J D, Cohen J S, Homer D A, et al. Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime [J]. Physical Review E, 2010, 82:036404.
  • 5Tahir N A, Deutsch C, Fortov V E, et al. Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt[J]. Physics Review Letters, 2005, 95:035501.
  • 6Barnard J J, Armijo J, More R M, et al. Theory and simulation of warm dense matter targets[J]. Nuclear Instruments and Methods in Physics Research A, 2005, 577 : 275-283.
  • 7Widmann K, Ao T, Foord M E, et al. Single-state measurement of electrical conductivity of warm dense gold[J]. Physical Review Letters, 2004, 92:125002.
  • 8Glenzer S H, Landen O L, Neumayer P, et al. Observations of plasmons in warm dense matter[J]. Physical Review Letters, 2007, 98: 065002.
  • 9Altarelli M, Brinkmann R, Chergui M, et al. The European x-ray free-electron laser: technical design report[R]. DESY 2006-097, 2006.
  • 10Zhu J, Yu H J, Chen N, et al. Hydrodynamic response o[ converter target impacted by high-current relativistic electron hea[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269(19) :2139-2144.

共引文献4

同被引文献44

  • 1Nomura R, Hirose K, Uesugi K, et al. Low core-mantle boundary temperature inferred from the solidus of pyrolite[J]. Science, 2014, 343: 522-525.
  • 2Moody J D, Michel P, Divol L, et al. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasrna[J]. Nature Phys, 2012, 8: 344-349.
  • 3Vinko S M, Cirieosta O, Cho B I, et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser[J]. Nature, 2012, 482: 59-62.
  • 4Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506 : 343-348.
  • 5Amato I. Metallic hydro gen: Hard pressed[J]. Nature, 2012,486: 174-176.
  • 6Zha C S, Liu Z, Ahart M,et al. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy[J]. Phys Rev Lett, 2013,110: 217402.
  • 7Mintsev V B,Fortov V E. Dense plasma properties from shock wave experiments[J]. J Phys A, 2006,39: 4319-4327.
  • 8Nellis W J. Dynamic compression of materials: metallization of fluid hydrogen at high pressures[J]. Rep Prog Phys, 2006,69: 1479-1580.
  • 9Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2011,87: 225501.
  • 10Knudson M D, Hanson D L, Bailey J E,et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deute- rium to 75 GPa[J]. Phys Rev Lett,2003,90: 035505.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部