期刊文献+

WA与RBFN在气密性故障诊断中的应用研究 被引量:7

Fault Diagnosis about Cylinder Gas Tightness Based on WA and RBFN
下载PDF
导出
摘要 提出了根据检测发动机起动时电瓶电压的波形来分析气密性的试验方法。在基于小波分析 (WA)的基础上对信号进行消除趋势项和除噪处理 ,并提出了包括周期延长和主频推移 2个新的判据在内的 7个特征参数。通过对径向基神经网络 (RBFN)的训练 ,证明该神经网络能够较好地进行故障模式辨识 ,从而为发动机气密性故障诊断提供了一个系统方案。 In this paper a new experiment method for analyzing cylinder gas tightness from the waveform of the storage battery voltage,which was collected when engine was driven,was discussed.The signal tendency and noise were canceled based on wavelet analysis.And 7 fault symptom parameters including two new parameters (period extension and main frequency delay) were put forward.The Radial Basis Function Network(RBFN)was trained by putting these symptom parameters in and this network could distinguish the fault modes preferably.Then a system scheme was formed to diagnose the cylinder compression ratio fault.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2002年第4期350-356,共7页 Transactions of Csice
关键词 气密性 故障诊断 小波 径向基神经网络 发动机 电压信号 Wavelet RBFN Gas tightness Fault diagnosis
  • 相关文献

参考文献2

二级参考文献3

  • 1[1]Brani Vidakovic,Concha Bielza Lozoya. On time-dependent wavelet denoising. IEEE Transaction on Signal Processing,1998,46(9) :2549~2554
  • 2[2]Zheng G T, McFadden P D.A time-frequency distribution for analysis of signals with transient components and its application to vibration analysis. Transaction of the ASME on Journal of Vibration and Acoustics, 1999, 121 (7):328~333
  • 3[3]Qin Qianqing , Yang Zongkai . Practical wavelet analysis .Xi'an:The Press of Xi'an University of Electronic Science and Technology, 1995

共引文献12

同被引文献20

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部