期刊文献+

多尺度级联行人检测算法的研究与实现 被引量:3

Research and Realization of Pedestrian Detection Algorithm by Multi-scale Cascaded Features
下载PDF
导出
摘要 行人检测算法是利用行人的特征结合分类器对图片中是否有行人进行判断的方法。文中基于传统的HOG行人特征检测方法以及Adaboost分类器思想,改进了行人检测算法。使用多尺度的HOG特征对图片的检测区域进行特征提取,并采用级联的Adaboost分类器结合对应尺度的特征进行分类判断,将判断结果输入下一级分类器中继续进行分类判断,最终实现区域内有无人的检测。实验结果表明多尺度下的级联分类器能够更加有效地筛选出行人区域,在计算时间小幅增加的情况下,很大地提高了检测精度。 Pedestrian detection algorithm is a method to decide whether there exists pedestrian or not in the picture by characters of pedes-trians combined with classifiers. In this paper,an improved pedestrian detection algorithm is advanced based on the traditional HOG method and Adaboost classifying idea. In this algorithm,use the multi-scale HOG features to extract the features in the detection region,then the cascaded Adaboost classifiers with multi-scale features are used to judge,getting its result input into the next level of classifier,and finally achieve the goal of pedestrian detection. The experimental result shows that the cascaded classifiers using multi-scale features performs better in pedestrian detection,which achieves higher detection precision at little cost of computing time.
出处 《计算机技术与发展》 2014年第8期10-13,共4页 Computer Technology and Development
基金 基金项目:欧盟 FP7 -PEOPLIE -IRSES -S2EuNet (247083)
关键词 行人检测 方向梯度直方图 多尺度 级联Adaboost pedestrian detection HOG multi-scale cascaded Adaboost
  • 相关文献

参考文献15

  • 1Dalal N ,Triggs B. Histograms of oriented gradients for human detection[ C ]//Proc of international conference on computer vision and pattern recognition. San Diego, CA, USA: IEEE, 2005:886-893.
  • 2Mu Yadong,Yan Shuicheng, Liu Yi,et al. Discriminative local binary patterns for human detection in personal album [ C ]// Proc of IEEE CVPR. Anchorage : IEEE ,2008 : 1-8.
  • 3Wang Xiaoyu, Han T X, Yan Shuicheng. A HOG-LBP human detector with partial occlusion handling [ C ]//Prnc of IEEE 12th international conference on computer vision. Kyoto: IEEE ,2009:32-39.
  • 4Wantanbe T,lto S, Yokoi K. Co-occurrence histograms of ori- ented gradients for pedestrian detection [ J ]. LNCS, 2009, 5214:37-47.
  • 5Liu Yazhou, Shan Shiguang,Zhang Wenchao, et al. Granularity -tunable gradients partition (GGP) descriptors for human de- tection [ C ]//Proc of CVPR. Miami, FL: IEEE, 2009:1255 - 1262.
  • 6Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection [ C ]//Proc of CVPR. San Francisco: IEEE,2010 : 1030-1037.
  • 7Wu Jianxin,Geyer C, Rehg J M. Real-time human detection using contour cues [ C ]//Proc of ICRA. Shanghai: IEEE, 2011:860-867.
  • 8Freund Y,Schapire R E. Experiments with a new boosting al- gorithm[ C ]//Proc of international conference on machine learning. [s. 1. ] :[s. n. ] ,1996:148-156.
  • 9Burges C J C. Tutorial on support vector machines for pattern reeognition[ J ]. Data Mining and Knowledge Discovery, 1998, 2(2) :121-167.
  • 10Sethian J A. Curvature and evolution of fronts [ J ]. Communi- cations in Mathematical Physics, 1985,101 ( 4 ) :487-499.

二级参考文献1

共引文献5

同被引文献14

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部