期刊文献+

微秒脉冲大气压氦气等离子体射流阵列特性 被引量:3

Atmospheric pressure plasma jet array in helium driven by microsecond pulses
下载PDF
导出
摘要 为了深入研究等离子射流阵列的放电特性,利用上升沿1μs、脉宽2μs的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。 In order to study the characteristics of a plasma jet array,the discharge was driven by a microsecond pulse generator with 1-μs rise time and 2-μs duration.With a needle-ring configuration,the discharge properties of the helium plasma jet array at different ground electrode positions and repetition pulse frequencies were studied by means of voltage and current measurement and light-emission pictures.The experimental results show that the discharge was initiated at the edges of the plasma jet array at first.With the increase of the applied voltage,the plasma jet occurred in the middle tube,and the plasma jet array was finally formed.When the gap between the ground electrode and the tube nozzle increased,the amplitude of discharge current increased at first,and then decreased(the maximum value was at the gap of 20mm).With the increase of repetition pulse frequency,the discharge mode changed from filamentary discharge to homogeneous discharge,the discharge current decreased at first, and then remained unchanged.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第4期62-66,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51222701 51207154 51377075) 电力设备电气绝缘国家重点实验室开放基金项目(EIPE12204) 国家重点基础研究发展计划(2014CB239505)
关键词 微秒脉冲 等离子体射流 射流阵列 放电特性 重复频率 microsecond pulse plasma jet jet array discharge characteristics repetition pulse frequency
  • 相关文献

参考文献21

二级参考文献154

共引文献140

同被引文献46

  • 1梅丹华,方志,邵涛.大气压低温等离子体特性与应用研究现状[J].中国电机工程学报,2020,40(4):1339-1358. 被引量:115
  • 2赵文华,沈岩,田阔.等离子体喷枪中的射流脉动控制[J].材料保护,2004,37(9):39-41. 被引量:6
  • 3潘文霞,孟显,吴承康.直流纯氩层流等离子体射流的长度变化[J].工程热物理学报,2005,26(4):677-679. 被引量:15
  • 4Glassman. Combustion[M]. San Diego, USA: Academic, 1966.
  • 5Sinibaldi J O, Rodriguez J, Channel B. Investigation of transient plasma ignition for pulse detonation engines[R]. California, USA: AIAA, 2005.
  • 6Klimov A, Bityurin V, Moralev I, et al. Plasma assisted ignition and combustion[R]. Nevada, USA: AIAA, 2005.
  • 7Cathey C, Cain J, Wang H, et al. OH production by transient plasma and mechanism of flame ignition and propagation in quiescent me- thane-air mixtures[J]. Combustion and Flame, 2008, 40(4): 715-727.
  • 8Dresevn S V. Physics and technology of low-temperature plasma[M]. Moscow, Russia: Atomic Energy Press, 1972.
  • 9Pfender E, Fincke J, Spores R. Entrainment of cold gas into thermal plasma jets[J]. Plasma Chemistry and Plasma Processing, 1991, 11(4): 529-543.
  • 10Pfender E. Thermal plasma technology: where do we stand and where are we going?[J]. Plasma Chemistry and Plasma Processing, 1999, 19(1): 1-31.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部