期刊文献+

拉索非线性随机振动的最优有界半连续控制 被引量:3

Optimal Bounded Semi-continuous Control of Nonlinear Random Vibration of Taut Cables
下载PDF
导出
摘要 研究斜拉索非线性随机振动的最优有界半连续控制。建立受控拉索的横向非线性运动方程,运用伽辽金法推导多模态耦合的振动方程;考虑控制力的有界性,建立多自由度非线性索系统的随机最优控制问题方程,应用随机平均法、动态规划原理与变分原理确定HJB方程并得到最优有界半连续控制律,最后通过数值结果说明该最优控制对于斜拉索非线性随机振动能够达到较好的实际控制效果。 The optimal bounded semi-continuous control of nonlinear random vibration of an inclined taut cable is studied. The nonlinear equation for transverse motion of the cable with control and excitation is derived and then converted into the vibration equations with multi-modal coupling by using Galerkin method. Considering the limitation of the control force, the equation for the random optimal control of the nonlinear cable system with multi-degree-of-freedom is established. Then, the HJB equation is determined, and the optimal bounded semi-continuous control law is obtained based on the random averaging method, dynamical programming principle and variational principle. Numerical results show that the proposed control method has good effect for the nonlinear random vibration control of the cables.
出处 《噪声与振动控制》 CSCD 2014年第2期133-135,共3页 Noise and Vibration Control
基金 国家自然科学基金项目(11072215)
关键词 振动与波 最优控制 有界控制力 非线性随机振动 拉索 vibration and wave optimal control bounded control force nonlinear random vibration cable
  • 相关文献

参考文献9

  • 1Irvine H M. Cable Structures[M]. Cambridge: MIT Press,1981.
  • 2Diouron T L, Fujino Y, Abe M. Control of wind- inducedself- excited oscillations by transfer of internal energy tohigher modes of vibration I: analysis in two degree offreedom[J]. ASCE J. Eng. Mech., 2003, 129: 514-525.
  • 3Zhou H J, Xu Y L. Wind- rain- induced vibration andcontrol of stay cables in a cable- stayed bridge [J]. Struct.Cont. Health Moni., 2007, 14: 1013-1033.
  • 4Ying Z G, Ni Y Q, Ko J M. Parametrically excitedinstability analysis of a semi- actively controlled cable[J].Eng. Struct., 2007, 29: 567-575.
  • 5张巍,应祖光,王建文.风激拉索张弛振荡的最优控制分析[J].噪声与振动控制,2012,32(3):21-24. 被引量:2
  • 6Zhao M, Zhu W Q. Stochastic optimal semi-active controlof stay cables by using magneto-rheological damper[J]. J.Vib. Cont., 2011, 17: 1921-1929.
  • 7Spencer B F, Dyke S J, et al. Phenomenological model formagneto- rheological dampers[J]. ASCE J. Eng. Mech.,1997, 123: 230-238.
  • 8Ying Z G, Ni Y Q, Ko J M. A bounded stochastic optimalsemi-active control [J]. J. Sound Vib., 2007, 304: 948-956.
  • 9Chitour Y, Liu W, Sontag E. On the continuity andincremental- gain properties of certain saturated linearfeedback loops[J]. Int. J. Robust Nonlin. Cont., 1995, 5:413-440.

二级参考文献8

  • 1陈昭晖,应祖光.斜拉索不稳定振动的主动及半主动控制[J].噪声与振动控制,2005,25(3):5-8. 被引量:1
  • 2Matsumoto M, Saito T, et al. Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges [J]. J. Wind Eng. Industrial Aerodyn., 1995, 57: 323-333.
  • 3Kazakevich MI, Vasilenko AG. Closed analytical solution for galloping aeroelastic self-oscillations [J]. J. Wind Eng. Industrial Aerodyn., 1996, 65: 353-360.
  • 4Xu YL, Wang LY. Analytical study of wind-rain-induced cable vibration: SDOF model [J]. J. Wind Eng. Industrial Aerodyn., 2003, 91: 27-40.
  • 5Diouron TL, Fujino , Abe M. Control of wind-induced self-excited oscillations by transfer of internal energy to higher modes of vibration I: analysis in two degree of freedom [J]. ASCE J. Eng. Mech., 2003, 129: 514-525.
  • 6Van der Burgh AHP, Hartono J: Rain-wind-induced vibrations of a simple oscillator [J]. Int. J. Non-Linear Mech., 2004, 39: 93-100.
  • 7Yang JN, Agrawal AK, Chen S. Optimal polynomial control for seismically excited non-linear and hysteretic structures [J]. Earthquake Eng. Struct. Dyn., 1996, 25: 1211-1230.
  • 8Nayfeh AH, Mook DT. Nonlinear oscillations [M]. New York: John Wiley & Sons, 1979.

共引文献1

同被引文献12

  • 1Housner G W, Bergman L A, Caughey T K, et al.Structural control: past, present, and future[J]. ASCEJournal of Engineering Mechanics, 1997, 123: 897-971.
  • 2Spencer B F, Nagarajaiah S. State of the art of structuralcontrol[J]. ASCE Journal of Structural Engineering,2003, 129: 845-856.
  • 3Soong T T, Cimellaro G P. Future directions in structuralcontrol[J]. Structural Control Health Monitoring, 2009,16: 7-16.
  • 4Wu Z, Lin R C, Soong T T. Non-linear feedback controlfor improved peak response reduction[J]. SmartMaterials and Structures, 1995, 4: A140-147.
  • 5Ying Z G, Ni Y Q. Optimal control for vibration peakreduction via minimizing large responses[J]. StructuralControl Health Monitoring, 2015, 22: 826-846.
  • 6Maurer H, Osmolovskii N P. Second order optimalityconditions for bang- bang control problems[J]. Controland Cybernetics, 2003, 32: 555-584.
  • 7Dimentberg M F, Iourtchenko D V, Bratus A S. Optimalbounded control of steady- state random vibrations[J],Probabilistic Engineering Mechanics, 2000, 15: 381-386.
  • 8Potter J N, Neild S A, Wagg D J. Generalisation andoptimization of semi- active, on- off switching controllersfor single degree- of- freedom systems[J], Journal ofSound and Vibration, 2010, 329: 2450-2462.
  • 9Ying Z G, Ni Y Q, Duan Y F. Parametric optimal boundedfeedback control for smart parameter- controllablecomposite structures[J]. Journal of Sound andVibration, 2015, 339: 38-55.
  • 10Stengel R F. Optimal Control and Estimation[M]. NewYork: JohnWiley & Sons, 1994.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部