期刊文献+

自反、传递(模糊)关系与拓扑空间 被引量:1

Reflexive,Transitive (Fuzzy) Relation and Topological Spaces
下载PDF
导出
摘要 研究了自反传递模糊关系与拓扑空间的联系,证明了一个自反传递的模糊关系对应一个单调的拓扑空间族,从而对应一个模糊化拓扑.特别地,当R是自反传递关系时,该拓扑族退化为一个拓扑空间,该拓扑空间以粗糙下近似为其内部算子. The relation between the reflexive , transitive fuzzy binary relation R with topological space is studied. We prove that a reflexive , transitive fuzzy binary relation has a corresponding to a fuzzying topology which is a monotone topological space, whence R is a reflexive , transitive relation, the fuzzying topology beconle a classical topology in which the closure and the interior operator is just the rough upper and lower approximation operator.
出处 《广西师范学院学报(自然科学版)》 2014年第1期28-30,35,共4页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西自然科学基金(2013GXNSFBA019016) 广西大学科研资助项目(XJZ130362)
关键词 模糊数学 自反 传递 拓扑空间 fuzzy mathematics reflexive zransizive zopological space
  • 相关文献

参考文献17

  • 1CHANGCL.FuzzyTopologicalSpaces[J].JournalofMathematicalanalysisandapplications,1968,24:182-190.
  • 2LIU Y,LUO M.FuzzyTopology[M].Singapore:WorldScientific,1997.
  • 3YING MS.Anewapproachforfuzzytopology(Ⅰ)[J].FuzzySetsSyst,1991,39:303-321.
  • 4YING MS.Anewapproachforfuzzytopology(Ⅱ)[J].FuzzySetsSyst,1992,47:221-232.
  • 5YING MS.Anewapproachforfuzzytopology(Ⅲ)[J].FuzzySetsSyst,1993,55:193-207.
  • 6SHABIR Muhammad,NAZ Munazza.Onsofttopologicalspaces[J].Computers & MathematicswithApplicaGtions,2011,61:1786-1799.
  • 7CAˇGMANNaim,KARATASSerkan.SerdarEnginoglu,Softtopology[J].Computers& MathematicswithAppliGcations,2011,62:351-358.
  • 8YAOYY.Twoviewsofthetheoryofroughsetsinfiniteuniverses[J].InternationalJournalofApproximateReaGsoning,1996,15:291-317.
  • 9陈德刚,张文修.粗糙集和拓扑空间[J].西安交通大学学报,2001,35(12):1313-1315. 被引量:42
  • 10QINKY,PEIZ.Onthetopologicalpropertiesoffuzzyroughsets[J].FuzzySetsandSystems,2005,151:601-613.

二级参考文献40

  • 1秦克云,裴峥,杜卫锋.粗糙近似算子的拓扑性质[J].系统工程学报,2006,21(1):81-85. 被引量:14
  • 2吴正江,秦克云,乔全喜.双论域L模糊粗糙集[J].计算机工程与应用,2007,43(5):10-11. 被引量:5
  • 3Pawlak Z.Rough sets[J].International Journal of Computer and Information Science, 1982,11:341-356.
  • 4Pawlak Z.Rough sets:theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers,1991.
  • 5Yao Y Y.Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning, 1996,15 : 291-317.
  • 6Yao Y Y.Relational interpretations of neighborhood operators and rough set approximation operators[J].Information Sciences,1998,101 239-259.
  • 7Kortelainen J.On the relationship between modified sets,topological spaces and rough sets[J].Fuzzy Sets and Systems,1994,61:91-95.
  • 8Lashin E F,Kozae A M,Abo Khadra A A,et al.Rough set theory for topological spaces[J].International Journal of Approximate Reasoning, 2005,40: 35-43.
  • 9Qin K,Pei Z.On the topological properties of fuzzy rough sets[J]. Fuzzy Sets and Systems,2005,151:601-613.
  • 10Kondo M.On the structure of generalized rough sets[J].Information Sciences, 2006,176 : 589-600.

共引文献59

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部