摘要
研究了自反传递模糊关系与拓扑空间的联系,证明了一个自反传递的模糊关系对应一个单调的拓扑空间族,从而对应一个模糊化拓扑.特别地,当R是自反传递关系时,该拓扑族退化为一个拓扑空间,该拓扑空间以粗糙下近似为其内部算子.
The relation between the reflexive , transitive fuzzy binary relation R with topological space is studied. We prove that a reflexive , transitive fuzzy binary relation has a corresponding to a fuzzying topology which is a monotone topological space, whence R is a reflexive , transitive relation, the fuzzying topology beconle a classical topology in which the closure and the interior operator is just the rough upper and lower approximation operator.
出处
《广西师范学院学报(自然科学版)》
2014年第1期28-30,35,共4页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
广西自然科学基金(2013GXNSFBA019016)
广西大学科研资助项目(XJZ130362)
关键词
模糊数学
自反
传递
拓扑空间
fuzzy mathematics
reflexive
zransizive
zopological space