期刊文献+

耦合KdV型方程有界行波解的存在性及其显式表达式 被引量:3

On Existence and Explicit Expression of Bounding Traveling Wave Solutions to Coupled KdV-Type Equation
下载PDF
导出
摘要 利用平面动力系统理论对非线性耦合KdV型方程的行波解进行定性分析,给出耦合方程所对应的平面动力系统在不同参数条件下的相图和有界行波解存在的条件.得出耦合方程只可能存在钟状孤波解和周期解,并利用改进的(G′/G)方法求出了方程4个有界行波解的显式表达式. Applying the theory of planar dynamical systems,we have carried out qualitative analysis for traveling wave solutions of the coupled KdV-type equation.We have obtained some phase portraits for the planar dynamical systems associated with them under different parameters conditions.Furthermore,we present the existence of bounded traveling wave solutions for the coupled KdV-type equation,and that it exists only the bell solitary wave solutions and periodic solutions.Finally,we have investigated that the explicit expression of four bounding traveling wave solutions by the improved(G′/G)-expansion method.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期26-29,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 2013年贵州民族大学科研基金 贵州省科学技术厅基金资助项目([2013]2138) 贵州省教育厅优秀科技创新人才支撑计划资助项目(KY[2012]092)
关键词 耦合KdV型方程 有界行波解 (G′ G)方法 the coupled KdV-type equation the bounding traveling wave solutions the(G′/G)-expansion method
  • 相关文献

参考文献10

  • 1丁凌.具有一般非线性项的Klein-Gordon和Born-Infeld耦合系统的无穷多个解[J].西南师范大学学报(自然科学版),2013,38(1):11-15. 被引量:2
  • 2ABLOWITZ M J, KAUP D J. NEWELL A C, et al. The Inverse Scattering Transform-Fourier Anallysis for Nonlinear Problems [J]. Studies in Applied Mathematics, 1974, 53(4) : 249-315.
  • 3KAWAMOTO S. Cusp Soliton Solutions of the Ito-Type Coupled Nonlinear Wave Equation [J]. Journal of the Physical Society of Japan, 1984, 53: 1203-1205.
  • 4KRISHINANAN E V. On the Ito-Type Coupled Nonlinear Wave Equation [J]. Journal of the Physical Society of Japan, 1986, 55(11): 3753-3755.
  • 5GURA-ROY C. Exact Solutions to a Coupled Nonlinear Equation [J]. International Journal of Theoretical Physics, 1988, 27(2): 447-449.
  • 6LU B Q, PAN Z L, QU B Z, et al. Solitary Wave Solutions for Some Systems of Coupled Nonlinear Equations [J]. Physics Letters A, 1993, 180(1-2): 61-64.
  • 7WANG Ming-liang, LI Xiang-zheng, ZHANG Jin-liang. The (G'/G)-Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [J]. Physics Letters A, 2008, 372: 417-423.
  • 8ZHANG Sheng, WANG Wei, TONG Jing-lin. A Generalized (G'/G)-Expansion Method and Its Application to the (2+ 1)-Dimensional Broer-Kaup Equations [J]. Applied Mathematics and Computer, 2009, 209: 399-404.
  • 9SHEHATA A R. The Traveling Wave Solutions of the Perturbed Nonlinear Schroinger Equation and the Cubic-Quintic Ginzburg Landau Equation Using the Modified (G'/G) Expansion Method [J]. Applied Mathematics and Computer, 2010, 217: 1-10.
  • 10LIU Xiao-hua, ZHANG Wei-guo, LI Zheng-ming. Application of Improved (G'/G)-Expansion Method for the Complex kdvEquation [J]. Advanced Science Letters, 2012, 7(1-3): 586-588.

二级参考文献9

  • 1APRILE T D, MUGNAI D. Solitary Waves for Nonlinear Klein-Gordon-Maxwell and Schr6dinger Maxwell Equations [J]. Proceedings of the Royal Society of Edinburgh, 2004, 134A(5) : 893--906.
  • 2BENCI V, FORTUNATO D. An Eigenvalue Problem for the Schrodinger-Maxwell Equations[J]. Top Meth Nonlinear Anal, 1998, 11(2): 283--293.
  • 3APRILE T D, WEI J C. Layered Solutions for a Semilinear Elliptic System in a Ball [J]. J Differential Equations, 2006, 226(1) : 269--294.
  • 4CHEN S J, TANG C L. Multiple Solutions for Nonhomogeneous Schr6dinger-Maxwell Equations and Klein-Gordon Maxwell Equations on R3 [J]. Nonlinear Differ Equ Appl, 2010, 17(5) : 559--574.
  • 5MUGNAI D. Coupled Klein-Gordon and Born-Infeld Type Equations: Looking for Solitary Waves [J]. Proc R Soc Lond A, 2004, 460(2045): 1519--1527.
  • 6RABINOWITZ P H. Minimax Methods in Critical Point Theory with Applications to Partial Differential Equations [M]. Washington D C: the American Mathematical Society, 1986.
  • 7李春,唐春雷,沈小可.二阶离散哈密尔顿系统周期解的存在性(英文)[J].西南大学学报(自然科学版),2009,31(6):116-119. 被引量:3
  • 8丁凌,姜海波,唐春雷.具有Hardy-Sobolev临界的椭圆方程在混合边界条件下的无穷多解(英文)[J].西南大学学报(自然科学版),2009,31(12):111-115. 被引量:5
  • 9段春生,陈尚杰,唐春雷.关于R^3上非齐次Schrdinger-Maxwell方程的注记(英文)[J].西南大学学报(自然科学版),2010,32(4):115-119. 被引量:2

共引文献1

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部