期刊文献+

Tunable Electromagnetic Cloaking by External Field 被引量:1

Tunable Electromagnetic Cloaking by External Field
下载PDF
导出
摘要 Electromagnetic cloaking based on the scattering cancellation method have been reviewed. The possibility of designing the tunable electromagnetic cloaking is analytically suggested with a single cloak composed of homogeneous materials,including semiconductor,superconductor,ferrite and ferroelectrics by using Mie scattering theory. The simulated results demonstrate that the cloaks with these homogeneous materials can drastically reduce the total scattering cross sections of the cloaked system by using the finite element method. These cloaking frequencies can be controlled by external field through tuning the permittivity or permeability of these materials by the applied field,such as temperature,magnetic field and electric field. These may provide some potential ways to design tunable cloaking with considerable flexibility. Electromagnetic cloaking based on the scattering cancellation method have been reviewed. The possibility of designing the tunable electromagnetic cloaking is analytically suggested with a single cloak composed of homoge- neous materials, including semiconductor, superconductor, ferrite and ferroelectrics by using Mie scattering theo- ry. The simulated results demonstrate that the cloaks with these homogeneous materials can drastically reduce the total scattering cross sections of the cloaked system by using the finite element method. These cloaking frequencies can be controlled by external field through tuning the permittivity or permeability of these materials by the applied field, such as temperature, magnetic field and electric field. These may provide some potential ways to design tunable cloaking with considerable flexibility.
机构地区 College of Science
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第3期241-247,共7页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(11174147,11104144)
关键词 scattering cancellation tunable electromagnetic cloaking scattering cross section scattering cancellation tunable electromagnetic cloaking scattering cross section
  • 相关文献

参考文献24

  • 1Pendry ,l B, Schurig D, Smilh D R. Controlling elec- tromagnetic fields[J]. Science, 2006, 312 (5781) :1780-1782.
  • 2Leonhardl U. Optical conformal mapping[J]. Sci- ence, 2006. 312(5781): 1777-1780.
  • 3Schurig D, Mock J J, Justice B J, et al. Melamateri al electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(3801):977-980.
  • 4Euclidean U, Tyc T. Broadhand invisibility by non- cloaking[J]. Science, 2009, 323(5910):110-112.
  • 5Alitalo P, l.uukkonen O, Jylha L. et al. Transmis- sion-line networks cloaking objects from electromag netic fields[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 416-121.
  • 6I.ai Y, Chen H, Zhang Z, et al. Complementary media invisibility cloak that cloaks objects al a dis tance omside the cloaking shell[J]. Physical Review Letters, 2009. 102(9): 93901.
  • 7Alu A, Engheta N. Achieving lranspareney with plasmonic and metamaterial coatings [J]. PhysicM Review E, 2005, 72(1): 16623.
  • 8Alu A, Engheta N. Plasmonic and metamateria cloaking: physical mechanisms and potenlials[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(9), 93002.
  • 9Edwards B, Silveirinha M, Engheta N. Experimeental verification of plasmonic cloaking at microwave fre quencies with metamaterials [ J ]. Physical Review Letters, 2009, 103:153901.
  • 10Filonov DS, Slobozhanyuk A P, Belov P A, et al. Double-shell metamaterial coatings for plasmonic cloaking[J]. Physica Status Solidi (RRL)Rapid Re search Leuers, 2012. 6(1): 16-18.

二级参考文献25

  • 1Huang M and Xu Z C 2005 Appl. Phys. A: Mater. Sci. Processing 81 193
  • 2Huang M and Xu Z C 2004 Thin Solid Films 450 324
  • 3Pandit C R L J, Pieski S, Cobian R, Cherif M and Stadler B J H 2001 Proc. SPIE 4284 29
  • 4Ustinov A B, Tiberkevich V S, Srinivasan G et al 2006 J. Appl. Phys. 100 093905
  • 5Fetisov Y K and Srinivasan G 2006 Appl. Phys. Lett. 88 143503
  • 6Ustinov A B, Srinivasan G and Kalinikos B A 2007 Appl. Phys. Lett. 90 031913
  • 7Adam J 1982 IEEE Trans. MTT S 79
  • 8Chen C L 1989 IEEE Trans. MTT 37 239
  • 9El-Sharawy E B 1995 IEEE Trans. MTT S 107
  • 10Adam J 1985 IEEE Trans. Magn. 24 1794

同被引文献32

  • 1Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.
  • 2Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.
  • 3Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors [J]. Physical Review Letters, 2003, 90(7): 077405.
  • 4Jaeyoun K, Richard S, Walter R B. Multi-peak dec- tromagnetically induced transparency ( EIT )-like transmission from bull's-eye-shaped metamaterial[J]. Optics Express, 2010, 18(17): 17997-18002.
  • 5Alexander A Z, Vladislav V K. Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials[J]. Journal of Applied Physics, 2007, 102(12): 123514.
  • 6Hu Y H, Wen S C, Zhuo H, et al. Focusing properties of Gaussian beams by a slab of Kertype left-handed metamaterial[J]. Optics Express, 2008, 16(7): 4774-4784.
  • 7Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.
  • 8Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292 (5514): 77-79.
  • 9Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85 (18): 3966-3969.
  • 10Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部