期刊文献+

基于视觉注意模型和SIFT的交通标志识别方法 被引量:2

Traffic signs recognition based on visual attention model and SIFT
下载PDF
导出
摘要 为了提高交通标志的识别速度和识别率,提出了一种基于视觉注意模型和SIFT特征的交通标志识别方法.首先基于视觉注意模型提取颜色特征,找出交通标志可能的候选区域,然后对候选区域进行SIFT特征提取,与标准交通标志图像库进行相似度计算,可实现快速准确的检测与识别.与传统方法相比,具有无需精确分割、计算量小、体现仿生学特性等优点.在采自国内外的两组交通标志图像库上进行交通标志识别测试,都得到了良好的效果. In order to improve the speed and accuracy of traffic signs recognition (TSR) , a novel method based on a visual attention model and scale invariant feature transform (SIFT) feature is proposed. First, color features are extracted based on the visual attention model, and the candidate regions of traffic signs could be achieved. Then, SIFT feature of the candidate region is extracted, and the similarity calculation is done be- tween the candidate region and the standard traffic signs. Thus, the traffic sign would be recognized. The pro- posed method can recognize the traffic signs more rapidly and accurately than traditional methods, and it is characterized by no need for segmentation, less calculation, and bionics. The experiments results on two traffic signs databases collected from home and abroad show the excellent effect of the method on TSR.
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2014年第3期339-343,共5页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金重大计划项目(90920006)
关键词 视觉注意 SIFT特征 交通标志 识别 visual attention SIFT traffic signs recognition
  • 相关文献

参考文献11

  • 1I'RIESE l,, I,AKMANN R, REHRMANN V. Ideogram identification in a real time traffic sign recognition sys- tem [ C ]// Proceedings of the Intelligent Vehicles Svmlosiunt 95. Detroit: [EEE Press, 1995: 310-314.
  • 2赵宏伟,陈霄,石景海,马凌蛟.综合颜色和形状特征的交通标志图像检索算法[J].吉林大学学报(工学版),2013,43(S1):128-132. 被引量:14
  • 3李海华,范娟.基于梯度的自适应边缘检测算法研究[J].河南理工大学学报(自然科学版),2013,32(1):76-79. 被引量:5
  • 4RAHMAN M O, MOUSUMI F A, SCAVINO E, et al. Real time road sign recognition system using artificial neural networks for bengali textual information box [ C]// International Symposium on Information Tech- nology. Kuala Lumpur: ITSim, 2008:1-8.
  • 5SHI MIN, WU HAIFENG, FLEYEH H. Support vec- tor machines for traffic signs recognition [ C ]// Inter- national Joint Conference on Neural Networks. Hong Kong:IEEE Press, 2008:3820-3827.
  • 6ITTI L. Models of bottom-up and top-down visual at- tention [ D] California : California Institute of Technol- ogy, 2000.
  • 7GAO X, PODLADCHIKOVA L, SHAPOSHNIKOV D, et al. Recognition of traffic signs based on their colour and shape features extracted using human vision mod- els[ J]. Visual Communication and Image Representa- tion, 2006, 17 (4) : 675-685.
  • 8LOWE DAVID G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9GRIGORESCU C, PETKOV N. Distance sets for shape filters and hnage Proeessing DIRK B WALTH shape recognition [ J ]. IEEE Trans on , 2003, 12(10): 1274-1286.
  • 10ER. SaliencyToolbox( V2 http://www, saliencytoolbox, net/index, html. 2013- 03-01.

二级参考文献17

  • 1SHASHANK MATHUR, ANII, AHI,AWAT. Applica- tion of Fuzzy Logic on Image Edge Detection[ J ]. In- telligent Information and Engineering Systems, 2008, 1:24-28.
  • 2HE ZHENGQUAN, SIYAL M Y. Edge Detection with BP Neural Networks [ J ]. International Conference on Signal Processing Proceedings, 1998,2 : 1382-1384.
  • 3] YOSHIDA T, KAWATA J, TADA T, et al. Edge De- tec|ion method with CNN[jI. SICE2004 AnnualCnn- ferem'e, 2004,2 : 1721-1724.
  • 4MANISHA KAUSHAL, ARJAN S1NGH, BALJIT SINGH. Adaptive Thresholding for Edge detection in (;ray Scale hnages [ J ]. International Journal of Engi- neering Science and Technology, 2010, 2 ( 6 ) : 2077- 2082.
  • 5Miura J,Kanda T,Shirai Y.An active vision system for real-time traffic signrecognition. Proceedings of IEEE International Conference on IntelligentTransportation Systems (ITS) . 2000
  • 6Y.J.Zhang,Z.W.Liu,Y.He.Comparison and improvement of color-based image retrievaltechniques. Proceedings of SPIE the International Society for Optical Engineering . 1997
  • 7Chellappa,bagdazian.Fourier coding of image boundaries. IEEE Transactionson Pattern Analysis and Machine Intelligence . 1984
  • 8Bergholm F.Edge Focusing. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • 9Gevers T,Smeulder A W M.Content-Based Image Retrieval by Viewpoint-Invariant Image Indexing. Image and Vision Computing . 1999
  • 10Wang Tao,Zheng Nan-ning,Xin Jing-min,et al.Integra-ting millimeter wave radar with a monocular vision sen-sor for on-Road obstacle detection applications. Sen-sors . 2011

共引文献17

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部