期刊文献+

灰度散布分类指导挖掘的高类似度文本分类

Classification of High Likeness Text with Guidance Under Distribution of Gray Level
下载PDF
导出
摘要 提出一种灰度散布分类指导挖掘的高类似度文本分类方法,采用灰度散布分类的思想对海量文本下的数据挖掘进行指导,采用灰度散布分类思想对特征更细分类能力,将相似度高的文本更细的分开,最后采用一组特征接近的随机词汇进行特征分类实验。结果显示,采用基于灰度散布分类指导挖掘方法,使特征类似度很高的文本可以被很好的区分开来,具有广泛的分类应用价值。 A classification of high likeness text with guidance under distribution of gray level was proposed, the distributionof gray level was used to do data mining in mass text, the detailed characteristic was extracted, and the high likeness textwas separated. Finally, a team of high likeness text was used to test the effect, and the experiment result shows that the highlikeness text can be separated well with guidance under distribution of gray level, so it has good value for separation application.
出处 《科技通报》 北大核心 2014年第4期179-181,共3页 Bulletin of Science and Technology
关键词 灰度散布 分类指导 高类似度文本分类 distribution of gray level guidance of classification high likeness text
  • 相关文献

参考文献5

二级参考文献22

  • 1宋锦萍,职占江.图像分割方法研究[J].现代电子技术,2006,29(6):59-61. 被引量:10
  • 2杨力.美国口语大观,中英文对照[M].合肥:中国科学技术大学出版社,2001..
  • 3Brun A, Smaili K, Jean - Paul H. Experiment Analysis in Newspaper Topic Detection [ A]. Proceedings of the Seventh International Symposium on String Processing Information Retrieval (SPIRE'00)[C]. Curuna, Spain: IEEE Computer Society, 2000.55 - 64.
  • 4Bigi B,De Mori R,El-Beze M,et al. Detecting topic shifts using a cache memory[ A], 5th International Conference on Spoken language Processing [ C ]. Sydney, Australia: [ s. n, ],1998.2331 - 2334.
  • 5Gilchrist, A. D. Classification and thesauri [ A ]. In: Vickery, B. (ed.). Fifty Years of Information Progress: a Journal of Documentation Review [C]. London: ASLIB. 1994. 85- 118.
  • 6Foskett, D.J. Thesaurus [A]. In:A. Kent, H. Lancours, and J.E. Daily (Eds.) Encyclopedia of Library and Informarion Science[C], NY: Marcel Dekker. 1980. Vol.30, 416 - 462.
  • 7张琪玉.当代中国的分类法与主题词表[A]..张琪玉情报语言学文集[c].北京:北京图书馆出版社,1999.211-229.
  • 8Shiri, A. A.. Thesauri on the Web: current developments and trends [J], Online Information Review, 2000, 24(4):273 - 279.
  • 9Schütze, et al. A cooccurrence - based thesaurus and two applications to information retrieval [J], Info. Processing and Management: an Int. J, 2000, 33(3):307- 318.
  • 10Güntzer, U., et al. Automatic thesaurus construction by machine learning from retrieval sessions [J], Information Processing and Management: an International Journal, 1989, 25(3) :265 - 273.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部