摘要
神经网络初始连接权值和阀值的选择对网络的预测精度及收敛速度影响很大,但又无法准确获得,针对此问题,建立遗传算法(GA)优化的BP神经网络预测模型,解决神经网络初始权值和阀值的选择问题。该模型通过遗传算法优化BP神经网络的权值和阀值,获得最优的初始权值和阀值,并应用优化后的BP神经网络预测模型对铣削力进行预测,最后与优化前的BP神经网络模型的铣削力预测值进行对比分析。研究结果表明,经遗传算法优化后的BP神经网络模型比优化前的BP神经网络模型的预测精度高,同时加快了收敛速度。
出处
《制造业自动化》
北大核心
2014年第14期59-63,共5页
Manufacturing Automation
基金
吉林省自然科学基金项目:薄壁零件切削加工变形分析及预测技术研究(20140101086JC)