期刊文献+

基于外观统计特征融合的人体目标再识别 被引量:21

Fusing Appearance Statistical Features for Person Re-identification
下载PDF
导出
摘要 人体目标再识别是视频监控等应用的关键问题之一。该文从外观统计特征融合的角度,利用人体的颜色和结构信息,基于空间直方图和区域协方差两种优秀的统计描述方法,研究了再识别问题的特征构建和测度选择等内容。构建特征时从图像多个层次的统计区域中提取了多类互补性较好的统计向量,设计测度时使用了简单的1l距离进行加权组合。两类统计方式融合而成的再识别方法不需要进行预处理和监督性训练过程。该文进行了广泛的实验比较和分析,验证了该文方法优异的识别性能和较强的实用性能。 Person re-identification is among the key issues in video surveillance. From the viewpoint of fusing appearance statistical features, human color and structure information are exploited; two statistical descriptors named spatiogram and region covariance are both explored on feature designing and metric choosing. Several complimentary feature vectors are extracted from a proper number of hierarchical image layers and regions. The simplest 1l norm distance is chosen to form the proposed weighted combining distance. The fused method with such two descriptors requires neither preprocessing nor supervised training. Extensive experiments by comparisons and analysis show that the proposed method not only achieves the state-of-the-art re-identification performance, but also enjoys a great applicability.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1844-1851,共8页 Journal of Electronics & Information Technology
基金 光电控制技术重点实验室和航空科学基金(20125186005)联合资助课题
关键词 人体目标再识别 特征融合 空间直方图 区域协方差 Person re-identification Feature fusing Spatiogram Region covariance
  • 相关文献

参考文献22

  • 1Gray D, Brennan S, and Tao H. Evaluating appearance models for recognition, reacquisition, and tracking[C]. IEEE International Workshop on Performance Evaluation for Tracking and Surveillance. Rio de Janeiro, Brazil, 2007: 41-47.
  • 2Wang H, Bao X, Choudhury R R, et al. Insight: recognizing humans without face recognition[C]. Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Georgia, USA, 2013, 7.
  • 3Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367.
  • 4Cheng D S, Cristani M, Stoppa M, et al. Custom pictorial structures for re-identification[C]. British Machine Vision Conference, Dundee, UK, 2011, 6.
  • 5Bazzani L, Cristani M, Perina A, et al. Multiple-shot person re-identification by chromatic and epitomic analyses[J]. Pattern Recognition Letters, 2012, 33(7): 898-903.
  • 6Ma B, Su Y, and Jurie F. Local descriptors encoded by fisher vectors for person re-identification[C]. European Conference on Computer Vision, Florence, Italy, 2012: 413-422.
  • 7范彩霞,朱虹,蔺广逢,罗磊.多特征融合的人体目标再识别[J].中国图象图形学报,2013,18(6):711-717. 被引量:25
  • 8Hu Y, Liao S, Lei Z, et al. Exploring structural information and fusing multiple features for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 794-799.
  • 9Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010: 435-440.
  • 10Bak S, Corvee E, Bremond F, et al. Multiple-shot human re-identification by mean riemannian covariance grid[C]. IEEE International Conference on Advanced Video and Signal-Based Surveillance, Klagenfurt, Austria, 2011: 179-184.

二级参考文献31

  • 1Matei B C, Sawhney H S, Amarasekera S. Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Reeognition(CVPR),Colorado Springs, CO, USA, June20-25, 2011. Piscataway: IEEE Computer Society, 2011: 3465-3472.
  • 2Wei-Shi Z, Shaogang G, Tao X. Person Re-identification by Probabilistic Relative Distance Comparison [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Colorado Springs, CO, USA, June 20-25, 2011.Piscataway: IEEE Computer Society, 2011: 649-656.
  • 3Aziz K-E, Merad D, Fertil B. People re-identification across multiple non-overlapping cameras system by appearance classification and silhouette part segmentation [C]// International Conference on Advanced Video and Signal-based Surveillance (AVSS), Klagenfurt, Austria, August 30-September 2, 2011. Piscataway: IEEE Computer Society, 2011: 303-308.
  • 4Jia Deng, Berg A C, Li Fei-Fei. Hierarchical semantic indexing for large scale image retrieval [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Colorado Springs, CO, USA, June 20-25, 2011.Piscataway: IEEE Computer Society, 20ll : 785-792.
  • 5Farenzena M, Bazzani L, Perina A, et al. Person re-identification by synarnetry-driven accumulation, of local features [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), San Francisco, CA, United States, June 13-18, 2010.Piscataway: IEEE Computer Society, 2010: 2360-2367.
  • 6BAiuml M, Stiefelhagen R. Evaluation of Local Features for Person Re-Identification in Image Sequences [C]// International Conference on Advanced Video and Signal-based Surveillance (AVSS), Klagenfurt, Austria, August 30-September 2, 2011. Piscataway: IEEE Computer Society, 2011: 291-296.
  • 7TEIXEIRA L F, CORTE REAL L. Video object matching across multiple independent views using local descriptors and adaptive learning [J]. Pattern Recognition Letters(S0167-8655), 2009, 30(2): 157-167.
  • 8Subrahmanya N, Shin Y C. Sparse Multiple Kemel Leaming for Signal Processing Applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2010, 32(5): 788-798.
  • 9Sonnenburg S, Ratsch G, Schafer C, et al. Large scale multiple kernel learning [J]. The Journal of Machine Learning Research(S1533-7928), 2006, 7(7): 1531-1565.
  • 10Rakotomamonjy A, Bach F R, Canu S, et al. Simple MKL [J]. The Journal of Machine Learning Research(S1533-7928), 2008, 9(11): 2491-2521.

共引文献25

同被引文献89

  • 1Bedagkar-Gala A,Shah S K. A survey of approaches and trends in person re-identification [ J ]. Image and Vision Computing,2014,32 (4) :270-286.
  • 2Wang X. Intelligent multi-camera video surveillance:a re- view [ J ]. Pattern Recognition Letters,2013,34 ( 1 ) : 3-19.
  • 3Zhao R, Ouyang W, Wang X. Unsupervised salience lear- ning for person re-identification [ C ] //Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland : IEEE, 2013 : 3586-3593.
  • 4Layne R, Hospedales T M, Gong S. Towards person identi- fication and re-identification with attributes [ C ] //Pro- ceedings of Computer Vision-ECCV 2012 Workshops and Demonstrations. Berlin/Heidelberg : Springer,2012:402-412.
  • 5Liu C, Gong S, Loy C C. On-the-fly feature importance mining for person re-identification [ J]. Pattern Recogni- tion,2014,47 (4) : 1602-1615.
  • 6Prosser B,Zheng W S, Gong S, et al. Person re-identifica- tion by support vector ranking [ C ]//Proceedings of the British Machine Vision Conference. Aberystwyth : BMVC, 2010 : 1-11.
  • 7Satta R, Fumera G, Roll F. Fast person re-identification based on dissimilarity representations [J]. Pattern Recog- nition Letters,2012,33(14) :1838-1848.
  • 8Dikmen M,Akbas E,lquang T S, et al. Pedestrian recog- nition with a learned metric [ M ]//Proceedings of 2010 Asian Conference on Computer Vision. Berlin/Heidel- berg : Springer, 2011 : 501-512.
  • 9Zheng W S, Gong S,Xiang T. Person re-identification by probabilistic relative distance comparison [ C ] //Pro- ceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs : IEEE, 2011 : 649-656.
  • 10Pedagadi S,Orwell J, Velastin S, et al. Local fisher dis- criminant analysis for pedestIian re-identification [ C ]// Proceedings of 2013 IEEE Conference on Computer Vi- sion and Pattern Recognition. Portland : IEEE, 2013 : 3318 - 3325.

引证文献21

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部