期刊文献+

针对机动目标跟踪的雷达发射波形选择 被引量:6

Radar Transmitted Waveform Selection for Maneuvering Target Tracking
下载PDF
导出
摘要 该文首先在交互多模型(Interacting Multiple Model,IMM)算法的框架下,选择常速模型和自适应加速度模型作为状态模型,以应对实际中非合作目标的非机动与机动状态,并将此算法称为自适应IMM算法。然后针对机动目标跟踪时,雷达发射波形的选择需要兼顾测距测速性能与多普勒容忍性的问题,提出将V型调频(V-Linear Frequency Modulated,V-LFM)信号作为发射波形。通过分析多脉冲线性调频信号,V-LFM信号和M序列3种信号对目标距离和速度估计性能的克拉美罗下界(Cramer-Rao Lower Bound,CRLB)与多普勒容忍性表明,V-LFM信号可以在较少多普勒容忍性损失的情况下,有效提升对目标距离和速度的估计精度。仿真结果表明:发射多脉冲V-LFM信号并采用自适应IMM算法,可以明显提高雷达系统的跟踪性能。 Firstly, in the framework of the Interacting Multiple Model(IMM) algorithm the constant-velocity model and the adaptive constant acceleration model are selected as the dynamic models for the un-maneuvering and maneuvering states of the un-cooperative target, which is called the adaptive IMM algorithm. Then since it is necessary to consider the performance of estimating range/velocity and Doppler tolerance for tracking a maneuvering target, the V-Linear Frequency Modulated(V-LFM) signal is selected as the transmitted signal in the radar system. The analysis on the Cramer-Rao Lower Bound(CRLB) for estimating the range/velocity and Doppler tolerance of three signals(LFM, V-LFM and M sequence) shows that the V-LFM waveform can effectively improve the performance of estimating the target range and velocity in the case of a bit loss in the Doppler tolerance. The simulations demonstrate that the tracking performance is apparently improved, when multiple pulses of V-LFM waveform is transmitted and the adaptive IMM algorithm is utilized in the radar system.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1912-1918,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271291 61201285) 新世纪优秀人才支持计划(NCET-09-0630) 陕西省自然科学基础研究计划项目(2012JM 8015) 陕西省教育厅专项计划项目(12JK0530 12JK0557) 中国博士后科学基金(2013M542329)资助课题
关键词 机动目标跟踪 波形选择 交互多模型算法 克拉美罗下界 Maneuvering target tracking Waveform selection Interacting Multiple Model(IMM) algorithm Cramer-Rao Lower Bound(CRLB)
  • 相关文献

参考文献15

  • 1Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model methods in target tracking: a survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998,34(1): 103-123.
  • 2Lan J, Li X R, and Jilkov V P. Second-order Markov chain based multiple-model algorithm for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 3-19.
  • 3Laneuville D and Bar-Shalom Y. Maneuvering target tracking: a Gaussian mixture based IMM estimator[C]. Proceedings of IEEE/AIAA Aerospace Conference, Big Sky, MT, 2012: 1-12.
  • 4熊波,甘露.MM-CBMeMBer滤波器跟踪多机动目标[J].雷达学报(中英文),2012,1(3):238-245. 被引量:4
  • 5Kershaw D J and Evans R J. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1536-1550.
  • 6Sira S P, Papandreou-Suppappola A, and Morrell D. Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3207-3217.
  • 7Haykin S, Zia A, Arasaratnam I, et al. Cognitive tracking radar[C]. Proceedings of the IEEE Radar Conference, Washington, DC, 2010: 1467-1470.
  • 8Haykin S, Zia A, Xue Y, et al. Control theoretic approach to tracking radar: first step towards cognition[J]. Digital Signal Processing, 2011, 21(6): 576-585.
  • 9Savage C O and Moran B. Waveform selection for maneuvering targets within an IMM Framework[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1205-1214.
  • 10檀甲甲,张建秋.跟踪机动目标的雷达波形选择新方法[J].系统工程与电子技术,2011,33(3):515-522. 被引量:8

二级参考文献51

  • 1巴宏欣,赵宗贵,杨飞,董强,张涛.机动目标的模糊自适应跟踪算法[J].系统仿真学报,2004,16(6):1181-1183. 被引量:30
  • 2Capraro C T, Bradaric I. Using genetic algorithms for radar waveform selection[C]//IEEE Radar Conference, 2008 : 1 - 6.
  • 3Altes R A, Titlelaum E L. Bat signals as optimally Doppler tol erant waveforms[J]. Journal Acoustics Society of America, 1970,48(4B) :1014 - 1020.
  • 4Holderied M W, Baker C J. Understanding signal design during the pursuit of aerial insects by echolocating bats: tools and applications [J]. Integrative Comparitive Biology, 2008, 48 (1):74-84.
  • 5Vespe M, Jones G. Lessons for radar[J]. IEEE Signal Pro eessing Magazine,2009,26(1) :65 - 75.
  • 6Amuso V, Blunt S. Applications and methods of waueform diversity[M]. Raleigh, NC: SciTech Publishing, 2009.
  • 7Drozd A. Waveform diversity and design[J]. IEEEAerospace and Electronic Systems Magazine, 2006 ( 210) : 46.
  • 8Nehorai A, Gini F. Introduction to the issue on adaptive waveform design for agile sensing and eommunication[J].IEEE Journal of Selected Topics in Signal Processing, 2007,1 (1) : 2 - 5.
  • 9Bar-Shalom Y, Fortmann T E. Tracking and data association [M]. New York: Academic, 1988.
  • 10Kershaw D, Evans R. Optimal waveform selection for tracking systems[J]. IEEE Trans. on Information Theory, 1994,40 (5) :1536-1550.

共引文献40

同被引文献34

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部