期刊文献+

基于压缩感知的雷达前视向稀疏目标分辨 被引量:4

A Sparse Target-scenario Determination Strategy Based on Compressive Sensing for Active Radar in the Line of Sight
下载PDF
导出
摘要 主动雷达使用多普勒波束锐化(DBS)和合成孔径雷达技术只能提高在斜视和侧视向的横向距离分辨,而对前视向波束内相同距离但不同方位-俯仰角度上的多个目标难以分辨。该文提出一种基于压缩感知理论(CS)的单接收通道结构雷达前视向稀疏目标分辨方法。多个天线子阵接收信号经随机加权求和后通过单个接收通道输出,同一距离单元上不同脉冲重复周期的接收机输出建模为对同一稀疏信号场景的多次观测,根据观测进行压缩感知信号重构得到稀疏目标场景估计。仿真表明,该方法能够实现雷达对前视向波束内的稀疏目标分辨。 Active radar can improve the cross-range resolution in the squint and side-looking direction using Doppler Beam Sharpening(DBS) and Synthetic Aperture Radar(SAR) techniques, but can difficultly determine multiple targets in the forward-looking direction at the same range cell but different angel in one beam. A spare target-scenario determination strategy based on Compressive Sensing(CS) framework is addressed which can obtain the resolution in the line of sight for active radar and need only one receiver channel. The outputs of multiple sub-arrays are randomly weighted and then summarized in single receiver channel. The single-receiver outputs in the same one range cell belonging to multiple pulse repetition periods are modeled as multiple observations with respect to the same one spare target-scenario, and then the sparse-target scene is estimated using the recovery method of compressive sensing based on observations. Numerical experiments show that the proposed method can obtain the resolution of a spare target scenario in one beam in the line of sight for active radar.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第8期1978-1984,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61371181)资助课题
关键词 雷达 压缩感知 前视向 稀疏目标分辨 单接收通道 Radar Compressive Sensing(CS) Line of sight Sparse target-scenario determination Single receiver channel
  • 相关文献

参考文献21

  • 1Candes E J, Romberg J, and Tan T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 3Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
  • 4Bilik I. Spatial compressive sensing for Direction-of-Arrival estimation of multiple sources using dynamic sensor arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1754-1769.
  • 5Cotter S F. Multiple snapshot matching pursuit for Direction Of Arrival (DOA) estimation[C]. The 15th European Signal Processing Conference, Poznan, 2007: 247-251.
  • 6Gretsistas A and Plumbley M. A multichannel spatial compressed sensing approach for direction of arrival estimation[C]. LVA/ICA'10 Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation, Malo, 2010: 458-465.
  • 7Tropp J, Gilbert A C, and Strauss M J. Simultaneous sparse approximation via greedy pursuit[C]. IEEE International Conference of Acoustics, Speech and Signal Processing, Philadelphia, 2005: 721-724.
  • 8Berg E and Friedlander M P. Theoretical and empirical results for recovery from multiple measurements[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2516-2527.
  • 9Gu Jian-feng, Wei Ping, and Tai Heng-ming. Two- dimensional DOA estimation by cross-correlation matrix stacking[J]. Circuits System and Signal Processing, 2011, 30(2): 339-353.
  • 10Gan Lu and Wang Xiao-qing. DOA estimation of coherently distributed sources based on block-sparse constraint[J]. IEICE Transactions on Communications, 2012, E95-B(7): 2472-2476.

二级参考文献171

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献753

同被引文献44

  • 1李悦丽,梁甸农,黄晓涛.一种单脉冲雷达多通道解卷积前视成像方法[J].信号处理,2007,23(5):699-703. 被引量:25
  • 2Richards M A. Fundamentals of Radar Sigzlal Processing [M]. New York: McGraw-Hill, 2005: 390-401.
  • 3Wang R, Deng Y K, Loffeld O, et al: Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on 2-D principle of stationary phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3504-3520.
  • 4Wu J, Li Z, Huang Y, et al: Bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling[J]. IEEE Geoseience and RemoteSensing Letters, 2014, 11(1): 148-152.
  • 5Wang R, Deng Y K, Zhang Z Z, et al: Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4496-4507.
  • 6Li W, Yang J, and Huang Y. Keystone transform-be:sed space-variant range migration correction for airborne forward-looking scanning radar[J]. Electronics Letters, 2012, 48(2): 121-122.
  • 7Richards M A. Iterative noneoherent angular superresolution [C]. Proceedings of the IEEE National Radar Conference, Ann Arbor, USA, 1988: 100-105.
  • 8Li D Y, Huang Y L, and Yang J Y. Real beam radar imaging based on adaptive Lucy-Richardson algorithmiC]. Proceedings of the International Conference on Radar, Chengdu, China, 2011: 1437-1440.
  • 9Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
  • 10Xu Gang, Xing Meng-dao, Zhang Lei, et al: Bayesian inverse synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1150-1154.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部