期刊文献+

超声旋压变幅器的设计与分析 被引量:1

Design and Analyses of Ultrasonic Spinning Amplitude Transformer
下载PDF
导出
摘要 在超声旋压系统中,变幅器由变幅杆与旋轮耦合而成,其谐振振型为变幅杆纵向振动与圆盘弯曲振动。该振型计算复杂,很难直接获得较为精确的尺寸,设计过程中需要不断修正尺寸以达到所要求的频率和振型。借助MSC.Marc有限元分析软件对变幅杆与旋轮耦合后的变幅器进行数值模拟分析,研究旋轮各个尺寸对变幅器谐振频率的影响,得到了旋轮各个尺寸对变幅器谐振频率的影响规律,设计出了符合要求的变幅器,试验表明其振动效果理想。 Abstract: In an ultrasonic spinning system, amplitude transformer was made from luffing rod and rotary wheel, the resonance vibration modes were: luffing rod longitudinal vibration, disc bending vibration. Since it was very complex to compute for this type of oscillator, it was difficult to obtain accurate size directly. In order to achieve design requirements of the frequency and vibration mode, it was necessary to constantly change the size during design process. This paper gave a lot of numerical simulation analyses for the amplitude transformer by means of the MSC. Marc finite element analysis software, the influences of each size of the spinning wheel on the resonance frequency of amplitude transformer were studied, the influence law of each size of the spinning wheel on the resonance frequency of amplitude transformer was obtained. An amplitude transformer which can meet the requirements is designed, and the desired effect of vibration was obtained in the tests.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第15期2004-2008,共5页 China Mechanical Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(2009CB724307)
关键词 超声旋压 变幅器 谐振 模态分析 ultrasonic spinning amplitude transformer resonance modal analysis
  • 相关文献

参考文献9

二级参考文献43

共引文献109

同被引文献34

  • 1张士宏.金属材料的超声塑性加工[J].金属成形工艺,1994,12(3):102-106. 被引量:29
  • 2Komarov S V, KuwaharA M, Abramov O V. High power ultrasonics in pyrometallurgy: current Status and recent development, ISIJ International, 2005, 45(12): 1765-1782.
  • 3Eskin G I. Broad prospects for commerciaI application of the ultrasonic (Cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry, 2001(8):.319-325,.
  • 4HE Xiaohua ,Sill Huiji ,ZHANG Yuduo , et al. In-situ scanning electron microscopy studies of small fatigue crack growth in ultrasonic consolidation bonded aluminum 2024 laminated structnm. Materials Letters, 2013(1 !2): 47 - 50.
  • 5Friel R J, Harris R A. Ultrasonic additive manufacturing-a hybrid production process for novel functional products//The Seventeenth CIRP Conference on Electro Physical and Chemical Machining(ISEM), Procedia CIRP, 2OI3: 35-40.
  • 6Christopher D, Hopkins B S. Development and characterization cf optimum process parameters for metallic composites made by ultrasonic consolidation[D[. Logan, Utah: Dissertation of Utah State University, 2010: 4-100.
  • 7Sriraman M R, Matt G0nser, Hiromichi T Fujii ,et al. Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. Journal of Materials Processing Technology, 2011(211): 1650- 1657.
  • 8Foster D R, Dapino M J, Babu S S. Elastic enstants of ultrasonic additive manufactured 3003-H18. Ultrasonics, 2013 (53): 211-218.
  • 9Mariani E, Ghassemieh E. Microstruetu evolution of 6061 O al alloy during ultrasonic consolidation: An insight from electron bac.kseatter diffraction, Acts Materialia, 2010(58): 2492-2503.
  • 10Ryan Hahnlen, Marcelo J Dapino. NiTi - A1 interface strength in ultrasonic additive manufaeturing composites. Composites: Part B, 2014 (59): 101-108.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部