期刊文献+

GPU OpenFlow海量数据网络处理模型——GOMDI 被引量:1

GOMDI: GPU OpenFlow massive data network analysis model
下载PDF
导出
摘要 OpenFlow的出现提高了现有网络的服务质量(QoS),但在处理海量数据时存在网络会话识别效率低、网络报文转发路径不佳等缺点。在OpenFlow的研究基础上,提出了海量网络数据处理(GOMDI)模型,通过将GPU并行计算、生物序列算法和机器学习方法相融合,设计出GOMDI网络会话匹配算法和路径选择算法。实验结果表明,GOMDI网络会话匹配算法与CPU环境相比加速比提升了近300;路径选择算法中网络丢包率低于5%,网络延时小于20 ms。因此,GOMDI模型可有效地提升网络性能,满足大数据环境下实时处理海量信息的需求。 OpenFlow enhances the Quality of Service (QoS) of traditional networks, but it has disadvantage that its network session identification efficiency is low and the network packet forwarding path is poor and so on. On the basis of the current study of the OpenFlow, GPU OpenFlow Massive Data Network Analysis (GOMDI) model was proposed by this paper, through integrating the biological sequence algorithm, GPU parallel computing algorithm and machine learning methods. The network session matching algorithm and path selection algorithm of GOMDI were designed. The experimental results show that the speedup of the GOMDI network session matching algorithm is over 300 higher than the CPU environment in real network, and the network packet loss rate of its path selection algorithm is lower than 5%, the network delay is less than 20ms. Thus, the GOMDI model can effectively improve network performance and meet the needs of the real-time processing for massive information in big data environment.
出处 《计算机应用》 CSCD 北大核心 2014年第8期2243-2247,2272,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61102018) 陕西省教育厅科研计划项目(12JK0933) 陕西省科技厅科研计划项目(2013JM8037) 咸阳师范学院专项科研基金资助项目(12XSYK068)
关键词 OpenFlow GPU 生物序列 机器学习 OpenFlow Graphic Processing Unit (GPU) biological sequence machine learning
  • 相关文献

参考文献20

  • 1GREENBERG A,HJALMTYSSON G,MALTZ D A,et al.A clean slate 4D approach to network control and management [J].ACM SIGCOMM Computer Communication Review,2005,35(5):41-54.
  • 2McKEOWN N,ANDERSON T,BALAKRISHNAN H,et al.OpenFlow:enabling innovation in campus networks [J].ACM SIGCOMM Computer Communication Review,2008,38(2):69-74.
  • 3MOORE A W,PAPAGIANNAKI K.Toward the accurate identification of network applications [C]// Proceedings of the 6th International Conference on Passive and Active Network Measurement.Berlin:Springer,2005:41-54.
  • 4NEEDLEMAN S B,WUNSCH C D.A general method applicable to the search for similarities in the amino acid sequence of two proteins [J].Journal of Molecular Biology,1970,48(3):443-453.
  • 5SMITH T F,WATERMAN M S.Identification of common molecular subsequences [J].Journal of Molecular Biology,1981,147(1):195-197.
  • 6AJI A M,FENG W,BLAGOJEVIC F,et al.Cell-SWat:modeling and scheduling wavefront computations on the cell broadband engine [C]// Proceedings of the 5th Conference on Computing Frontiers.New York:ACM Press,2008:13-22.
  • 7MARTINS W S,del CUVILLO J,USECHE F J,et al.A mul-tithreaded parallel implementation of a dynamic programming algorithm for sequence comparison [C]// PSB 2001:Proceedings of the 6th Pacific Symposium on Biocomputing.Hawaii:[s.n.],2001.2001:311-322.
  • 8SIMON H A.The sciences of the artificial [M].Cambridge:MIT Press,1996.
  • 9MICHALSKI R S.A theory and methodology of inductive learning [J].Artificial Intelligence,1983,20(2):111-161.
  • 10ANDERSON J R.Machine learning:an artificial intelligence approach [M].San Francisco:Morgan Kaufmann Publishers,1986.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部