期刊文献+

高斯加权的多分类器物体追踪

Gaussian weighted multiple classifiers for object tracking
下载PDF
导出
摘要 针对在物体外观快速变化的情况下,大多数弱学习器不能捕获物体新的特征分布,导致追踪失败的问题,提出了高斯加权的联机多分类器增强算法。该算法为每一个领域问题定义一个弱分类器,每个弱分类器包括一个简单的视觉特征和阈值,引入高斯加权函数来权衡每个弱分类器在特定样本上的贡献,通过多分类器联合学习来提高追踪性能。在物体追踪过程中,联机多分类器在对物体定位的同时还能估计物体的姿态,能够成功地学习多模态外观模型,在物体外观快速变化的情况下追踪物体。实验结果表明:所提算法在经过一个较短序列的训练后,平均追踪错误率为12.8%,追踪性能明显提升。 When the appearance of an object changes rapidly, most of the weak learners can not capture the new feature distributions which will lead to tracking failure. In order to deal with that issue, a Gaussian weighted online multiple classifiers algorithm boosting for object tracking was proposed. This algorithm defined one weak classifier which included a simple visual feature and a threshold for each domain problem. Gaussian weighting function was introduced to weigh each weak classifier's contribution in a particular sample, therefore the tracking performance was improved through joint learning of multiple classifiers. In the process of object tracking, online multiple classifiers can not only simultaneously determine the location and estimate the pose of the object, but also successfully learn multi-modal appearance models and track an object under rapid appearance changes. The experimental results show that, after a short initial training phase, the average tracking error rate of the proposed algorithm is 12.8%, which proves that the tracking performance has enhanced significantly.
出处 《计算机应用》 CSCD 北大核心 2014年第8期2394-2398,2403,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170193) 惠州市科技计划项目(2011B020006002)
关键词 物体追踪 多分类器 高斯加权函数 分类 聚类 模式识别 object tracking multiple classifiers Gaussian weighted function classification clustering patternrecognition
  • 相关文献

参考文献6

二级参考文献74

  • 1葛嘉琦,李勃,陈启美.基于图像运动区域的车辆遮挡跟踪算法[J].南京大学学报(自然科学版),2007,43(1):66-72. 被引量:8
  • 2Yilmaz A, Javed O, Shah M. Object tracking.. A survey. ACM Computing Surveys, 2006, 38 (4) :1-45.
  • 3Kim T K, Wong S F, Stenger B, et al. Incre- mental linear discriminant analysis using suffi- cient spanning set approximations. IEEE Con- ference on Computer Vision and Pattern Recog- nition, 2007, 1-8.
  • 4Wang H, Hou X W, Liu C L. Boosting incre- mental semi-supervised discriminant analysis for tracking. The 20^th International Conference on Pattern Recognition, 2010, 2748-2751.
  • 5Wen J, Gao X B, Li X L, et al. Incremental pairwise discrirninant analysis based visual tracking. Neurocomputing, 2010, 74 (1 - 3) 428-438.
  • 6Ross D A, Lira J, Lin R S, et al. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77 (1): 125-141.
  • 7Lim J, Ross D, Lin R S, et al. Incremental learning for visual tracking. Advances in Neural Information Processing Systems, 2005, 17: 793-800.
  • 8Tuzel O, Porikli F, Meet P. Region eovariance --A fast descriptor for detection and classifica- tion. 2006 IEEE 9th European Conference on Computer Vision, Lecture Notes in Computer Science. Springer-Verlag, 2006, 589-600.
  • 9Porikli F, Tuzel O. Covariance tracking using model update based on lie algebra. 2006 IEEE Conference on Computer Vision and Pattern Recognition, 2006, 728-735.
  • 10Maher M. A differential geometric approach to the geometric mean of symmetric positive-defi- nite matrices. Siam Journal on Matrix Analysis And Applications, 2005, 26(3): 735-747.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部