期刊文献+

基于偏最小二乘分析的双模粒子滤波目标跟踪 被引量:6

Tracking objects based on partial least squares analysis using particle filtering with dual models
原文传递
导出
摘要 针对在复杂背景下,基于主成分分析(PCA)的目标跟踪方法准确率较低的问题,使用偏最小二乘分析,提出一种双模粒子滤波的跟踪算法.首先采用偏最小二乘分析对目标区域建模,作为观测模型;然后利用仿射变换描述目标的形变过程,分别在李群及其切向量空间上建立双模的动态模型;最后结合特征空间更新策略,使用粒子滤波实现目标跟踪.实验表明,所提出的算法能够有效滤除背景噪声,跟踪结果稳定且准确. For the problem that the object tracking algorithm using principal components analysis(PCA) has low accuracy in a complex environment, based on the partial least squares analysis, an object tracking algorithm is proposed by using particle filtering with dual models. Firstly, the model of object region is built by the partial least squares analysis, which is applied as the observation model. Then, the dynamic model with dual models is built on Lie group and the corresponding tangent vector space respectively, with the describing the object deformation process by affine transformation. Finally, combining with the update strategy for feature space, the object tracking algorithm is realized by particle filtering. Experiments show that the tracking results are stable and accurate, and the proposed algorithm can effectively filter out the background noise.
出处 《控制与决策》 EI CSCD 北大核心 2014年第8期1372-1378,共7页 Control and Decision
基金 国家自然科学基金项目(61273078)
关键词 目标跟踪 偏最小二乘 黎曼流形 粒子滤波 双模 object tracking partial least squares Riemannian manifold particle filtering dual model
  • 相关文献

参考文献4

二级参考文献40

  • 1刘良江,王耀南.灰度直方图和支持向量机在磁环外观检测中的应用[J].仪器仪表学报,2006,27(8):840-844. 被引量:7
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3ZHOU S K, CHELLAPPA R, MOGHADDAM B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Trans Image Processing. 2004, 13(11): 1491-1506.
  • 4HAGER G D, BELHUMEUR P N. Efficient region tracking with parametric models of geometry and illumination [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998: 20(10): 1025-1039.
  • 5BAKER S, MATTHEWS I. Lucas-Kanade 20 years on: A unifying framework [J]. International Journal of Com-puter Vision, 2004, 56(3):221-255.
  • 6ROSS D, LIM J W, LIN R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 7LI X, HU W I, ZHANG Z F, et al. Robust visual tracking based on incremental tensor subspace learning [A]. Proceeding of the IEEE International Conference on Computer Vision [C]. Rio de Janeiro, Brazil, October, 2007.
  • 8TUZEL O, PORIKLI F, MEER E Region covariance: A fast descriptor for detection and classification [A]. Proceeding of 9th European Conference on Computer Vision [C], Graz, Austria, 2006, 2: 589-600.
  • 9PENNEC X, FILLARD P, AYACHE N. A Riemannian framework for tensor computing [J]. International Journal of Computer Vision, 2006, 66 (1): 41-66.
  • 10PORIKLI F, TUZEL O, MEER E Covariance tracking using model update based on Riemannian manifolds [A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [C], New York, 2006, 1: 728-735.

共引文献91

同被引文献50

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部