期刊文献+

无线传感器网络中安全高效的空间数据聚集算法 被引量:11

Secure and Energy-Efficient Spatial Data Aggregation Algorithm in Wireless Sensor Networks
下载PDF
导出
摘要 提出了一种传感器网络中安全高效的空间数据聚集算法SESDA(secure and energy-efficient spatial data aggregation algorithm).SESDA基于路线方法实现数据聚集,由于算法沿着已设计好的路线执行聚集请求和数据聚集,使得SESDA不受网络拓扑结构的影响,适用于网络拓扑结构动态变化的传感器网络,且节省了网络拓扑结构的维护消耗.此外,针对过多加/解密操作对节点能量急剧消耗的特点,SESDA通过安全通道传输感知数据来保证数据的隐私性,避免了节点之间在数据传输过程中需要对感知数据进行加/解密操作,不仅可以节约节点大量的能量从而延长网络寿命,而且使得数据聚集具有很小的处理延迟,因而获得较高的聚集精确度.理论分析和实验结果显示,SESDA具有低通信量、低能耗、高安全性和高精确度的特点. This paper proposes a secure and energy-efficient spatial data aggregation algorithm for sensor networks (SESDA for short). SESDA is an itinerary-based algorithm to achieve data aggregation. Owing to the well-designed itinerary for aggregate request propagation and data aggregation, SESDA is not susceptible to network topology and thus suitable for sensor networks with transient network topology, hence improves energy efficiency. In addition, to counter dramatic energy consumption caused by heavy encryption/ decryption operations, SESDA uses secure channel to obtain data privacy. SESDA needs no encryption/decryption operations during data aggregation, which significantly reduces the energy consumption, prolongs the lifetime of sensor networks, and achieves high accuracy of aggregation results due to small delivery delay. Theoretical analysis and experimental results show that SESDA has low traffic and energy consumption, high safety and accuracy.
出处 《软件学报》 EI CSCD 北大核心 2014年第8期1671-1684,共14页 Journal of Software
基金 国家自然科学基金(61373015 61370050 41301407) 中国博士后基金(2013M540447) 教育部高等学校博士学科点专项科研基金(20103218110017) 江苏高校优势学科建设工程资助项目(PAPD) 中央高校基本科研业务费专项基金(NP2013307) 安徽高校省级自然科学研究项目(KJ2012Z120)
关键词 数据聚集 隐私保护 安全通道 拓扑结构无关 切片技术 data aggregation privacy-preserving secure channel infrastructure-flee slicing technology
  • 相关文献

参考文献20

  • 1Culler D, Estrin D, Srivastava M. Overview of sensor networks. IEEE Computer, 2004,37(8):41-49. [doi: 10.1109/MC,2004.93].
  • 2Xu N, Rangwala S, Chintalapudi KK, Ganesan D, Broad A, Govindan R, Estrin D. A wireless sensor network for structural monitoring. In: Stankovic JA, Arora A, Govindan R, eds. Proc. of the 2nd ACM Conf. on Embedded Networked Sensor Systems. Baltimore: ACM Press, 2004. 13-24. [doi: 10.1145/1031495.1031498].
  • 3张希伟,戴海鹏,徐力杰,陈贵海.无线传感器网络中移动协助的数据收集策略[J].软件学报,2013,24(2):198-214. 被引量:58
  • 4He W, Nguyen H, Liu X, Nahrstedt K, Abdelzaher T. iPDA: An integrity-protecting private data aggregation scheme for wireless sensor networks. In: Proc. of the IEEE Military Communication Conf. San Diego: IEEE Press, 2008. 1-7. [doi: 10.1109/MILCOM. 2008.4753645].
  • 5Girao J, Westhoff D, Schneider M. CDA: Concealed data aggregation for reverse multicast traffic in wireless sensor networks. In: Proc. of the IEEE Int'l Conf. on Communications. Seoul: IEEE Press, 2005. 3044-3049. [doi: 10.1109/ICC.2005.1494953].
  • 6Yu Y, Krishnamachari B, Prasanna VK. Energy-Latency tradeoffs for data gathering in wireless sensor networks. In: Proc. of the 23rd IEEE Int'l Conf. on Computer Communications. Hong Kong: IEEE Press, 2004. 244-255. [doi: 10.1109/INFCOM.2004.1354 498].
  • 7Madden S, Franklin MJ, Hellerstein JM, Hong W. TAG: A tiny aggregation service for ad-hoc sensor networks. In: Proc. of the ACM OSDI. Boston: ACM Press, 2002. 131-146. [doi: 10.1145/844128.844142].
  • 8Xu Y, Lee WC, Xu J, Mitchell G. Processing window queries in wireless sensor networks. In: Liu L, Reuter A, Whang KY, Zhang J J, eds. Proc. of the 22nd IEEE Conf. on Data Engineering. Atlanta: IEEE Press, 2006. 70-80. [doi: 10.1109/ICDE.2006.119].
  • 9Castelluccia C, Mykletun E, Tsudik G. Efficient aggregation of encrypted data in wireless sensor networks. In: Proc. of the 2nd Annual Int'l Conf. on Mobile and Ubiquitous Systems. San Diego: IEEE Press, 2005. 109-117. [doi: 10.1109/MOBIQUITOUS. 2005.25].
  • 10He W, Liu X, Nguyen H, Nahrstedt K, Abdelzaher T. PDA: Privacy-Preserving data aggregation in wireless sensor networks. In: Proc. of the 26th IEEE Int'l Conf. on Computer Communications. Alaska: IEEE Press, 2007. 2045-2053. [doi: 10.1109/INFCOM. 2007.237].

二级参考文献3

共引文献57

同被引文献98

  • 1朱珺青,郭龙江,任美睿,钟颖莉.基于组移动模型的移动传感网数据聚集算法的研究[J].计算机研究与发展,2011,48(S2):231-235. 被引量:2
  • 2陈贵海,李成法,叶懋,吴杰.EECS:一种无线传感器网络中节能的聚类方案[J].计算机科学与探索,2007,1(2):170-179. 被引量:24
  • 3刘明,曹建农,陈贵海,陈力军,王晓敏,龚海刚.EADEEG:能量感知的无线传感器网络数据收集协议[J].软件学报,2007,18(5):1092-1109. 被引量:67
  • 4LIU C G, CAO G H. Distributed monitoring and aggregation in wireless sensor networks (INFOCOM 2010) [ C ]//Pro- ceedings of The 29th IEEE Conference on Computer Communications (INFOCOM 2010). San Diego: ACM, 2010:1-9.
  • 5XU N, RANGWALA A, CHINTALAPUDI K K, et al. A wireless sensor network for structural monitoring [ C ]//Proceed- ings of the 2nd International Conference on Embedded Networked Sensor Systems. New York, USA: ACM, 2004:13-24.
  • 6YUN Y S, XIA Y. Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications [ J ]. IEEE Transactions on Mobile Computing,2010,9 ( 9 ) : 1308-1318.
  • 7ESCHENAUER L, GLIGOR V D. A key-management scheme for distributed sensor networks [ C ]//Proceedings of the 9th ACM Conf. on Computer and Communications Security. Washington: ACM Press, 2002: 41-47.
  • 8GNAWALI O, FONSECA R, JAMIESON K, et al. Collection tree protocol [ C ]//Proceedings of the 7th ACM Conf. on Em- bedded Networked Sensor Systems. New York, USA: ACM Press, 2009: 1-14.
  • 9KHULLER S, RAGHAVACHARI R, YOUNG L. Balancing minimum spanning trees and shortest-path trees [ J ]. Algo- rithm,1994, 120(4) : 305-321.
  • 10LIANG J B, WANG J X, CAO J N, et al. An efficient algorithm for constructing maximum lifetime tree for data gathering without aggregation in wireless sensor networks [ C ]//Proceedings of The 29th IEEE Conference on Computer Communica- tions (INFOCOM 2010). San Diego, USA: ACM, 2010: 356-360.

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部