期刊文献+

面向结构的基于学习的规划方法 被引量:1

Structure-Oriented Learning-Based Planning Method
下载PDF
导出
摘要 近年来,规划中的学习问题重新受到了关注.如何通过学习机制改善现有规划器,使其能够可靠而令人信服地超越现有非学习的规划器的能力,仍然是一个尚未解决的难题.提出了面向规划问题和解的结构的基于学习的规划技术.该方法将先验知识表示成"子问题-规划片段"的形式.每次规划器成功找到解以后,根据问题的初始状态和目标状态,构造规划对象的初始子状态和目标子状态,构成子问题,并从规划解中抽取该子问题对应的规划片段.这些先验知识将被唯一记录并保存成先验知识库.新问题的求解首先从先验知识库中检索与当前求解问题相关的先验知识;然后,将这些先验知识经过例化、合并步骤后编码成句子;最后,将这些句子连同问题编码得到的句子作为SAT求解器的输入,实现最终解的确定.实验使用了IPC中的基准测试例子进行测试.实验结果表明,SOLP算法求解速度与传统非学习的规划器相比具有明显优势,最佳情况下可达约80%的效率提升. The goal of reliably outperforming non-learning planners via learning is still to be achieved. A novel structure-oriented learning-based planning method (SOLP) is presented. SOLP anaylyses the structure knowledge, decomposes the planning problem into initial sub-state and goal sub-state, its solution into plan fragment, when planner finds out a solution successfully. The structure knowledge from previous experiment, or prior knowledge, will be saved in domain. When encountering new problem, SOLP firstly recalls the prior problem structure equivalent or similar to the current problem and the corresponding plan fragment from the domain file, then instantiates the learned prior knowledge as ground knowledge, and finally, encodes the ground knowledge as a satisfiability clause. These clauses, together with the set of clauses from the problem, form the input of the algorithm. SOLP calls the SAT Solver to determine the final solution. An experiment is conducted to test the algorithm in several different domains from IPC to demonstrate the efficiency and effectiveness of the new approach. The results show that, the speed of SOLP has obvious advantage than that of non-learning planner, with up to 80% improvement in extreme case.
出处 《软件学报》 EI CSCD 北大核心 2014年第8期1743-1760,共18页 Journal of Software
基金 国家重点基础研究发展计划(973)(2005CB321902 2010CB328103) 国家自然科学基金(60773201 61003056) 广东省自然科学基金(10451032001006140) 广州市科技和信息化局应用基础研究计划(2010Y1-C641) 广东省教育厅高校优秀青年创新人才培育项目(LYM10081 LYM_0065) 中央高校基本科研业务费专项资金(21612414) 广东省教育厅科技创新项目(2013kjcx0086) 广东财经大学自然科学研究项目(11BS52001)
关键词 问题结构 解结构 规划片段 结构知识学习 problem structure solution structure plan fragment structure knowledge learning
  • 相关文献

参考文献29

  • 1Rosa TDL, Jim6nez S, Fuentetaja R, Borrajo D. Scaling up heuristic planning with relational decision trees. Journal of Artificial Intelligence Research, 2011,40(4):767-813. [doi: 10.1613/jair.3231].
  • 2Fern A, Yoon S, Givan R. Approximate policy iteration with a policy language bias: Solving relational Markov decision processes. Journal of Artificial Intelligence Research, 2006,25(1):75-118. [doi: 10.1613/jair.1700].
  • 3Fox M, Long D, Magazzeni D. Plan-Based policy-learning for autonomous feature tracking. In: Proc. of the 22rid Int'l Conf. on Automated Planning and Scheduling (ICAPS 2012). AAAI Press, 2012.38-46.
  • 4Yoon S, Fern A, Givan R. Learning control knowledge for forward search planning. The Journal of Machine Learning Research, 2008,9:683-718.
  • 5Botea A, Enzenberger M, Miiller M, Schaeffer J. Macro-FF: Improving AI planning with automatically learned macro-operators. Journal of Artificial Intelligence Research, 2005,24(10):581-621. [doi: 10.1613/jair.1696].
  • 6Gerevini A, Saetti A, Vallati M. Exploiting macro-actions and predicting plan length in planning as satisfiability. In: Proc. of the AI * IA 2011. Berlin, Heidelberg: Springer-Verlag, 2011.189-200.
  • 7Newton M. Wizard: Learning macro-actions comprehensively for planning [Ph.D. Thesis]. Department of Computer and Information Science, University of Strathclyde, 2008.
  • 8Bibai J, Sav6ant P, Schoenauer M, Vidal V. An evolutionary metaheuristic based on state decomposition for domain-independent satisficing planning. In: Proc. of the ICAPS. AAAI Press, 2010. 18-25.
  • 9Vidal V, Geffner H. Branching and pruning: An optimal temporal POCL planner based on constraint programming. Artificial Intelligence, 2006,170(3):298-335. [doi: 10.1016/j.artint.2005.08.004].
  • 10Dr6o J, Sav6ant P, Schoenaner M, Vidal V. Divide-and-Evolve: The marriage of descartes and darwin. In: Proc. of the 7th Int'l Planning Competition----The Deterministic Part. Menlo Park: AAAI Press, 2011.29-30.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部