期刊文献+

金融股指稳定性的样本熵分析 被引量:1

The application of sample entropy in stock stability analysis
原文传递
导出
摘要 运用样本熵分析方法,对上证指数、深圳成指、恒生指数和道琼斯指数对数收益率时间序列进行了多尺度复杂性分析,证明了股票序列的熵值与金融市场稳定程度具有对应关系:当货币流通量增加时,金融股指的熵值提高,市场更成熟。同时对国内外金融股指的进一步对比分析表明,当市场受到控制时,即使货币流通量增加,熵值仍然会剧烈下降,市场发生明显的退化。最后通过对股指各时间尺度下熵值的横向对比,揭示了短、中、长期市场各自的特点。 By means of sample entropy, the logarithmic price difference series of the Shanghai Composite Index, the Shenzhen Component Index, the Hang Seng Index, and the Dow Jones Index are analyzed.It is proved that the entropy of stock is related with market stability.When the amount of currency in circulation increased, the entropy of stock in-creased as well, the market becomes more mature.Further analysis of domestic and foreign financial index indicates that when the market is under control, even if the amount of currency in circulation increased, the entropy will still decrease sharply, the market degrades.Through horizontal comparison of the entropy of different time scale, characteristics of the short-term and long-term market are revealed.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第7期50-56,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11272196 11222222)
关键词 样本熵 金融股指 稳定性分析 the sample entropy stock index stability analysis
  • 相关文献

参考文献14

  • 1GHASHGHAIE S,BREYMANN W,PEINKE J,et al.Turbulent cascades in foreign exchange markets[ J].Nature,1996,381(6585):767-770.
  • 2LALOUX L,CIZEAU P,BOIJCHALID J P,et al.Noise dressing of financial correlation matrices [ J ].Physical Review Let-ters,1999,83(7):1467-1470.
  • 3乔坎坤,卢志明.扩散熵方法对股指内在规律性的分析[J].复旦学报(自然科学版),2013,52(5):712-716. 被引量:2
  • 4PINCUS S,Approximate entropy as a measure of system complexity[ J ].Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2297-2301.
  • 5PINCUS S,KALMAN R E.Irregularity,volatility,risk,and financial market time series [ J ].Proceedings of the National Academy of Sciences of the United States of America,2004,101(38):13709-13714.
  • 6MARTINA E,RODRIGUEZ E,ESCARELA-PEREZ R,et al.Multiscale entropy analysis of crude oil price dynamics[J].Energy Economics,2011,33(5):936-947.
  • 7R1CHMAN J S,DOUGLAS E L,MOORMAN J R.Sample entropy[ J ].Methods in Enzymology,2004,384(11):172-184.
  • 8RICHMAN J S,MOORMAN J R.Physiological time-series analysis using approximate entropy and sample entropy [ J ].American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6):2039-2049.
  • 9LAKE D E,RICHMAN J S,GRIFFIN M P,et al.Sample entropy analysis of neonatal heart rate variability [J ].American Journal of Physiology-Heart and Circulatory Physiology,2002,283(3):789-797.
  • 10RICHMAN J S.Sample enaxpy statistics and testing for order in complex physiological signals [ J ].Communications in Sta-tistics-Theory and Methods,2007,36(5):1005-1019.

二级参考文献14

  • 1Ghashghaie S, Breymann W, Peinke J, et al. Turbulent cascades in torelgn exchange markets[J]. Nature, 1996, 381(6585): 767-770.
  • 2Laloux L, Cizeau P, Bouchaud J P, et al. Noise dressing of financial correlation matrices[J]. Physical Review Letters, 1999, 83(7).- 1467-1470.
  • 3Daubechies I. Ten lectures on wavelets[M]. Philadelphia: Society for Industrial Mathematics, 1992.
  • 4Pincus S, Kalman R E. Irregularity, volatility, risk, and financial market time series[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38) : 13709-13714.
  • 5Wang G J, Xie C, Han F. Multi-scale approximate entropy analysis of foreign exchange markets efficiency[J]. Systems Engineering Procedia, 2012, 3 : 201 208.
  • 6Shi W, Shang P J. Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets[J]. Nonlinear Dynamics, 2013, 71(3) : 539-554.
  • 7Martina E, Rodriguez E, Escarela-Perez R, et al. Multiscale entropy analysis of crude oil price dynamics [J]. Energy Economics, 2011, 33(5) : 936-947.
  • 8Alvarez-Ramirez J, Rodriguez E, Alvarez J. A multiscale entropy approach for market efficiency[J]. International Review of Financial Analysis, 2012, 21 : 64-69.
  • 9Seafetta N, Grigolini P. Scaling detection in time series: Diffusion entropy analysis[J]. Physical Review E, 2002, 66: 036130.
  • 10Cai S M, Zhou P L, Yang H J, et al. Diffusion entropy analysis on the scaling behavior of financial markets[J]. Physica A, 2006, 367: 337-344.

共引文献1

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部