期刊文献+

具有渐近线性的非线性项的Hardy类非齐次椭圆问题的多个解 被引量:1

On Multiple Solutions for Hardy Type Nonhomogeneous Elliptic Problems with Asymptotically Linear Nonlinearity
下载PDF
导出
摘要 用临界点理论中的Ekeland变分原理和山路引理得到具有Hardy项及在原点和无穷远点都是渐近线性的非齐次项的半线性椭圆方程两个非平凡解的存在性结果. Some existence of two different nontrivial solutions are obtained for solutions of semilinear ellip-tic nonhomogeneous equations with Hardy terms and the general symptotically linear nonlinearity which is asymptotically linear at zero and at infinity by means of the Ekeland’s variational principle and the Moun-tain Pass Theorem in critical point theory.
作者 丁凌 庄常陵
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期10-14,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 湖北省教育厅科学技术研究计划重点项目(D20122501)
关键词 Hardy类非齐次椭圆问题 渐近线性 EKELAND变分原理 山路引理 Hardy type nonhomogeneous proHems asymptotically linear Ekeland's variational principle Mountain Pass Theorem
  • 相关文献

参考文献5

二级参考文献14

  • 1宋树枝,唐春雷.拟线性椭圆方程共振问题解的存在定理[J].西南师范大学学报(自然科学版),2005,30(1):1-6. 被引量:9
  • 2廖为,蒲志林.一类缺乏紧性的p-Laplacian方程非平凡弱解的存在性[J].四川师范大学学报(自然科学版),2006,29(1):26-29. 被引量:12
  • 3丁凌,唐春雷.具有Hardy-Sobolev临界指数的p-Laplacian方程解的存在性和多重性(英文)[J].西南大学学报(自然科学版),2007,29(4):5-10. 被引量:12
  • 4[1]Brezis H,Nirenberg L.Positive Solutions of Nonlinear:Elliptic Equations Involving Critical Sobolev Exponents[J].Comm Pure Appl Math,1983,36(4):437-477.
  • 5[2]Ma R Y.On a Conjecture Concerning the Multiplicity of Positive Solutions of Elliptic Problems[J].Nonlinear Anal,1996,27(7):775-780.
  • 6[3]Silva Elves A B,Padua Joao C N,Soares Sérgio H M.Positive Solutions of Critical Semilinear Problems Involving a Sub-linear Term at the Origin[J].Cadernos De Mathematica,2004,5:245-262.
  • 7[7]Ding L,Tang C L.Existence and Multiplicity of Positive Solutions for a Class of Semilinear Elliptic Equations Involving Hardy Eerm and Hardy-Soholev Critical Exponents[J].J Math Anal Appl,2007,339(2):1073-1083.
  • 8[8]Ding L,Tang C L.Existence and Multiplicity of Solutions for Semilinear Elliptic Equations with Hardy Terms and Har-dy-soholev Critical Exponents[J].Appl Math Lett,2007,20(12):1175 -1183.
  • 9[10]Ghoussoub N,Yuan C.Multiple Solutions for Quasi-linear PDEs involving the Critical Sobolev and Hardy Exponents[J].Trans Amer Math Soc,2000,352(12):5703-5743.
  • 10[11]Chen J Q.Multiple Positive Solutions for a Class of Nonlinear Elliptic Equations[J],J Math Anal App[,2004,295(2):341 -354.

共引文献4

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部