期刊文献+

基于BWD谱峭度的暂态电能质量扰动分类识别 被引量:2

Classification of Transient Power Quality Disturbances Based on BWD Spectral Kurtosis
下载PDF
导出
摘要 根据暂态电能质量扰动的内在特性和谱峭度的特点,提出一种基于巴特沃斯分布(BWD)的谱峭度计算新方法,并与支持向量机相结合应用于暂态电能质量扰动识别。该算法采用BWD谱峭度方法计算暂态脉冲和暂态振荡2类扰动信号的谱峭度,选取谱峭度的最大值、最小值和均值作为特征量,输入PSO优化参数的SVM进行训练测试。通过PSCAD/EMTDC获得仿真数据,并分析之。结果表明,基于BWD谱峭度方法能够有效提取扰动特征量,且具有良好的抗噪性能。利用SVM分类器在小样本和叠加有其他扰动,能有效识别两类扰动,识别率较高。 According to the inherent characteristics of the transient power quality disturbances and the characteristics of spectral kurtosis, a new method based on BWD of calculating spectral kurtosis, which is combined with support vector machine to apply in transient power quality disturbances classification, is proposed in this paper. BWD spectral kurtosis method is used to calculate spectral kurtosis of transient pulses and transient oscillation which are two kinds of disturbed signals in the algorithm. The maximum, minimum and average of spectral kurtosis are chosen as characteristics, and then input into SVM for training and forecasting, whose parameters are optimized with PSO. Simulation data is acquired by PSCAD/EMTDC and analyzed with this method. The results show that the method based on BWD spectral kurtosis can effectively extract disturbance characteristics and have a good anti-noise capability. SVM classifier can effectively identify two kinds of disturbance and have a higher recognition rate for small samples and other disturbances superposition.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2014年第7期11-16,共6页 Proceedings of the CSU-EPSA
基金 国家自然科学基金项目(U1134205 51007074) 教育部新世纪优秀人才支持计划项目(NECT-08-0825) 中央高校基本科研业务费专项资金资助项目(SWJTU11CX14 SWJTU09ZT10)
关键词 暂态扰动 巴特沃斯分布 谱峭度 支持向量机 transient disturbance Butterworth distribution spectral kurtosis support vector machine
  • 相关文献

参考文献17

二级参考文献124

共引文献627

同被引文献28

  • 1HAJIAN M, AKBARI F A. A New Hybrid Pattern Recogni-tion Scheme for Automatic Discrimination of Power Quality Disturbances[J]. Measurement, 2014, 51: 265-280.
  • 2BISWAL B, BISWAL M, MISHRA S, et al. Automatic Clas- sification of Power Quality Events Using Balanced Neural Tree [J]. IEEE Transactions on Industrial Electronics, 2014, 61 (1): 521-530.
  • 3BARNUM H, BARRETT J, CLARK L O, et al. Entropy and Information Causality in General Probabilistic Theories[J]. New Journal of Physics, 2010 (12): 1-3212015-09-15]. http: // www. niP. org. DOI: 10. 1088/1367-2630/12/3/033024.
  • 4BILMES T A. A Gentle Tutorial of the EM Algorithm and Its Apllication to Parameter Estimation for Gaussian Mixture and Hidden Markov Mode[M]. City of Berkely: U. C. Berkely, 1998.
  • 5Liu Zhigang , Hu Qiaoling, Cui Yan, et al. A new detec- tion approach of transient disturbances combining wavelet packet and Tsallis entropy[J]. Neurocomputing, 2014, 142 (142) :393-407.
  • 6Senroy N, Suryanarayanan S, Ribeiro P F. An improved Hilbert-Huang method for analysis of time-varying wave- forms in power quality[J]. IEEE Trans on Power Systems, 2007,22(4) : 1843-1850.
  • 7Liu Haiyang, Huang Weiguo, Wang Shibin, et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J]. Signal Pro- cessing,2014(96) : 118-124.
  • 8Liu Zhigang, Zhang Qiaoge. An approach to recognize the transient disturbances with spectral kurtosis[J]. IEEE Trans on Instrumentation and Measurement, 2014,63 ( 1 ) : 46-55.
  • 9Antoni J. The spectral kurtosis : a useful tool for character- ising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006,20 (2) : 282-307.
  • 10Zin A A B M, Mahmoud P H A, Khkairuddin A B, et al. An over view on doubly fed induction generators' controls and contributions to wind based electricity generation[J]. Renewable and Sustainable Energy Reviews, 2013, 27 (27) : 692-708.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部