期刊文献+

松辽盆地深层火山岩岩性预测方法 被引量:6

PREDICTING METHOD OF THE LITHOLOGIES OF THE DEEP VOLCANIC ROCKS IN SONGLIAO BASIN
下载PDF
导出
摘要 基于松辽盆地深层火山岩岩心的密度及磁化率数据,通过模型正演分析可以看出,深层火山岩产生的重、磁异常不大,大多表现为叠加在强背景之上的次级异常,不易识别火山岩体.为此提出了积分-迭代延拓平化曲方法,增强火山岩磁异常信息,均衡磁异常,消除深度影响.通过应用该方法进行深层火山岩岩体圈定及岩性识别表明:该方法能有效增强深层火山岩的磁异常信息;磁异常的斜导数、欧拉反褶积能有效圈定火山岩边界;重、磁反演的视密度、视磁化率及两者的相关系数是识别火山岩的最佳三参数组合;井约束下的神经网络能有效判别火山岩岩性. Based on the data of the core density and magnetic susceptibility of the deep volcanic rocks in Songliao Basin and moreover through the forward analyses of the model, the gravity and magnetic anomalies of the rocks are not so serious, they show subordinate anomalies that are superimposed on the strong background and result in the difficulty in the recognition of the volcanic rock bodies. Therefore a new method of integral-iterative continuation changed from flat to curve is put forward to enhance and balance the magnetic anomaly information of the volcanic rocks, and finally eliminate the influences of the depth. By means of the application of the method, the delineation of the rock bodies and identification of the lithologies of the deep volcanic rocks show that the approach can effec- tively enhance the magnetic anomaly information; the oblique derivative, Euler deconvolution of the anomaly can effectively delineate the boundary of the rocks ; the apparent density, magnetic susceptibility obtained from the grav- ity and magnetic reversion and their correlation coefficients are the best three combination parameters; the neural network constrained by wells is an effective method to recognize the lithologies of the volcanic rocks.
作者 周华
出处 《大庆石油地质与开发》 CAS CSCD 北大核心 2014年第4期153-157,共5页 Petroleum Geology & Oilfield Development in Daqing
基金 国家重点基础研究发展计划“973”项目(2009CB219307)
关键词 深层火山岩 火山岩磁异常 视密度 视磁化率 神经网络 松辽盆地 deep volcanic rock volcanic rock magnetic anomaly apparent density apparent magnetic suscepti-bility neural network Songliao Basin
  • 相关文献

参考文献9

二级参考文献39

共引文献589

同被引文献106

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部