期刊文献+

PE-UHMW/GNPs导电复合材料的制备和表征 被引量:2

Preparation and Characterization of PE-UHMW/Graphene Nanoplatelets Conductive Composites
下载PDF
导出
摘要 采用超声溶液分散法制备出超高分子量聚乙烯/石墨烯(PE-UHMW/GNPs)导电复合材料,研究了该材料的导电渗流行为和阻-温特性。研究发现,PE-UHMW/GNPs导电复合材料的导电渗流阈值为3.8%,即当导电填料在体系中的质量分数达到3.8%时,材料内部逐渐形成较为完善的导电网络,从而实现其导电特性。研究和探讨了PE-UHMW/GNPs导电复合材料的正温度系数(PTC)效应和负温度系数(NTC)效应。研究发现,PE-UHMW/GNPs导电复合材料的PTC效应会随着GNPs含量的增加逐渐增强,当导电填料GNPs的添加量达到3.8%时,通过阻-温曲线可以观察到,PE-UHMW/GNPs导电复合材料具有最大的PTC强度和相对较低的室温体积电阻率。场发射扫描电子显微镜分析结果表明,GNPs和PE-UHMW之间的相互作用会随着热循环次数的不同而发生变化,最终会影响到材料的PTC效应。 Ultra-high molecular weight polyethylene (PE-UHMW) / graphene nanoplatelets (GNPs) conductive composites with a segregated structure was fabricated using ethanol-assisted dispersion. A percolation threshold of 3.8% was achieved because the conductive network was formed to realise electrical conductivity. The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of PE-UHMW / GNPs conductive composites was investigated. The results show that PTC behavior enhance with increasing GNPs content but this is not always the case. The maximum PTC effect is observed in PE-UHMW /GNPs conductive composites (GNPs is 3.8%) with relatively low room temperature resistivity and relatively high PTC intensity. The structure characteristic of PE-UHMW/GNPs conductive composites examined by field emission scanning electron microscopy reveal that the slight interaction between GNPs and PE-UHMW matrix may be changed by thermal cycles, and this can explain why thermal cycles could increase PTC and NTC intensity.
出处 《工程塑料应用》 CAS CSCD 北大核心 2014年第8期26-30,共5页 Engineering Plastics Application
关键词 石墨烯微片 超高分子量聚乙烯 正温度系数效应 重复性 导电渗流阈值 graphene nanoplatelets PE-UHMW PTC effect reproducibility conductive percolation threshold
  • 相关文献

参考文献6

  • 1Feller J F, Linossier I, Levesque G. Conductive polymer composites (CPCs): comparison of electrical properties of poly (ethylene-co- ethyl acrylate)-carbon black with poly (butylene terephthalate) / poly (ethylene-co-ethyl acrylate)-earbon black[J]. Polymers for Advanced Technologies, 2002,13(10-12):714-724.
  • 2Qi Haisong, M/ider E, Liu Jianwen. Unique water sensors based on carbon nanotube-cellulose composites[J]. Sensors and Actuators B:Chemical, 2013,185(1): 225-230.
  • 3Ramanujam B T S, Mahale R Y, Radhakrishnan S.Polyethersulfone- expanded graphite nanocomposites:Charge transport and impedance characteristics[J].Composites Science and Technology,2010,70(14):2 111-2 116.
  • 4Dreyer D R, Ruoff R S, Bielawski C W. From conception to realization:An historial account of graphene and some perspectives for its future[J]. Angewandte Chemie International Edition, 2010, 49(49):9 336-9 344.
  • 5Hu Hongliang, Zhang Gun, Xiao Liguang, et al. Preparation and electrical conductivity of graphene / ultrahigh molecular weight polyethylene composites with a segregated structure[J]. Carbon, 2012,50(12):4 596-4 599.
  • 6Yu Gang, Zhang Mengqi, Zeng Hong. Carbon-black-filled polyolefine as a positive temperature coefficient material:effect of composition, processing, and filler treatment[J]. Journal of Applied Polymer Science, 1998,70(3):559-566.

同被引文献35

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部