期刊文献+

模糊最小二乘支持向量机回归研究及应用

Research and Application of Fuzzy Least Square Support Vector Machine Regression
下载PDF
导出
摘要 针对传统支持向量机对训练样本内的噪声和孤立点比较敏感,导致建模精度不高的问题,将模糊集理论引入到最小二乘支持向量机回归中,建立一种基于数据域描述的模糊最小二乘支持向量机回归的数学模型,该方法将样本映射到高维空间,在高维空间中寻找最小包含超球,然后根据样本到超球心的距离确定模糊隶属度的大小,通过仿真实验验证,该算法提高了支持向量机回归的训练精度,将此模型应用于谷氨酸发酵过程菌体浓度预测,结果表明此方法的有效性. The traditional SVM is more sensitive to the noise and isolated points in training sample, and have lower modeling accuracy. In this paper, fuzzy set theory is introduced to least squares support vector regression, and then to establish a data domain description fuzzy least squares support vector machine regression. This method will sample mapped into a high dimensional space, and search a minimum enclosing sphere in high dimensional space. Meanwhile, according to the distance from sample to the center of the sphere, the size of fuzzy membership can be determined. A simulation experiment is provided to demonstrate that this algorithm can improve the accuracy of support vector machine regression. This model is applied to predict the concentration of glutamic acid bacteria fermentation process. Results we obtain in simulation show the effectiveness of the proposed approach.
作者 孙政 潘丰
出处 《计算机系统应用》 2014年第8期105-108,共4页 Computer Systems & Applications
基金 国家自然科学基金(61273131) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 最小二乘支持向量机回归 数据域描述 谷氨酸发酵 least squares support vector machine regression data domain description glutamic acid fermentation
  • 相关文献

参考文献3

二级参考文献14

  • 1侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100. 被引量:157
  • 2张雪雯,李艳君.基于自调节粒子群算法的电力系统经济负荷分配[J].电网技术,2006,30(18):8-13. 被引量:47
  • 3Ma Y G. Research on soft sensor modeling of fermenta- tion process based on v-SVR [ C]//Proceedings of the 2006 IEEE International Conference on Information Ac- quisition. Weihai, China, 2006 : 759 - 763.
  • 4Gonzaga J C B, Meleiro L A C, Kiang C, et al. ANN- based soft-sensor for real-time process monitoring and control of an industrial polymerization process [ J]. Com- puters and Chemical Engineering, 2009, 33 ( 1 ) : 43 - 49.
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme learning ma- chine: a new learning scheme of feedforward neural net- works [ C ]//Proceedings of the International Joint Confer- ence on Neural Networks. Budapest, Hungary, 2004: 985 - 990.
  • 6Huang G B, Zhu Q Y, Siew C K. Real-lime learing ca- pability of neural networks [ R ]. Singapore: School of Electrical and Electronic Engineering, Nanyang Techno- logical University, 2003.
  • 7Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine [ J ]. Pattern Recognition, 2005. 38f 10) : 1759 - 1763.
  • 8Yoan Miche, Sorjamaa A, Bas P, et al. OP-ELM: opti- mally pruned extreme learning machine[ J]. Transactions on neural networks. 2010. 21 ( 1 ) : 158 - 162.
  • 9Huang G B, Zhu Q Y, Siew C K. Extreme learning ma- chine: theory and applications [ J]. Neurocomputing, 2006, 70(1/2/3) : 489 -501.
  • 10Petkovic M D, Stanimirovic P S, Tasic M B. Effective partitioning method for computing weighted Moore-Pen- rose inverse [ J]. Computers and Mathematics with Ap- plications, 2008, 55(8): 1720- 1734.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部