期刊文献+

基于主题学习的学习伙伴推荐算法 被引量:1

Learning Partners Recommendation Algorithm Based on Thematic Study
下载PDF
导出
摘要 学习伙伴是开放虚拟学习社区的重要资源,学习伙伴中的助学者可以帮助普通学习者克服学习障碍,相互提高沟通交流能力.在构建出基于本体的知识库后,综合学习者的兴趣、认知和热心度特征,提出了一种基于主题学习的学习伙伴推荐算法.实验结果表明,学习者在提供学习经历后,算法可以计算出它与其他学习者之间的伙伴评分,评分差异较好反映了真实学习环境中的最佳学习伙伴经验,有效地提高了开放虚拟学习社区构建的个性化和智能化,从而提升开放学习社区中学习者的学习效率和效果. Learning partners are important resources in opening virtual studying community. The tutors who come from the learning partners can help the general learner out of learning disabilities, and improve their ability of communication each other. After constructing a Knowledge Database based on ontology, we record the learner characters about interest, grade of cognize, degree of enthusiasm. According to these factors, we bring forward a learning partner recommendation algorithm using Thematic Study. The result of experiment indicates that the algorithm can make different partner grade on the foundation of the learner’s study experience. These grade can reflect the reality situation. It is significant for opening virtual studying community to improve its personalization and intellectualization, consequently to advance study efficiency.
作者 张杰 林木辉
出处 《计算机系统应用》 2014年第8期119-124,共6页 Computer Systems & Applications
基金 福建省教育厅A类(JA12086) 福建省科技厅自然基金(2011J01343)
关键词 主题学习 虚拟学习社区 学习伙伴 助学者 thematic study virtual studying community learning partner tutor
  • 相关文献

参考文献9

二级参考文献30

  • 1谢圣献,谢光.语义检索在电子商务中的应用研究[J].微计算机信息,2008,24(12):135-136. 被引量:4
  • 2李善平,尹奇韡,胡玉杰,郭鸣,付相君.本体论研究综述[J].计算机研究与发展,2004,41(7):1041-1052. 被引量:275
  • 3张丙奇.基于领域知识的个性化推荐算法研究[J].计算机工程,2005,31(21):7-9. 被引量:34
  • 4Lin W, Alvarez S A, Ruiz C. Efficient adaptive su-pport association rule mining for recommen-der system[ J]. Data Mining and Knowledge Discovery,2006,6( 1 ) :83 - 105.
  • 5Mobasher B, Dai H,Luo T,et al. Effective perso-nalization based on associ- ation rule discovery from web usage data [ A ]. Mobasher B ed. 3rd Int Workshop on Web Information and Data Management ( WIDM2001 ) [ C]. New York:ACM Press,2001:9- 15.
  • 6Mnbsher B. WebPersonalizer: a server-side recommender system based on web usage mining [ EB/OL]. http: // www. cs. depaul.edu/research/technical. asp, 2001.
  • 7Fu X, Budzik J, Hammond K. Mining navigation history for recommendation[ A]. Riecken D ed. Proc Int Conf Intelligent User Interfaces [C]. New York:ACM Press,2000:106- 112.
  • 8Sleeman D H, Brown J S. Intelligent tutoring systems [M]. NewYork: Academic Press, 1982: 1--11.
  • 9Fensel. Ontologies: silver bullet for knowledge management and electronic commerce [M]. Berlin: Springer- Verlag, 2001.
  • 10郁书好,郭学俊.基于本体的教学知识库研究与应用[J].计算机技术与发展,2007,17(8):161-164. 被引量:22

共引文献386

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部