期刊文献+

夹层板复杂弯曲极限强度性能研究 被引量:4

Investigation on the Ultimate Strength of Sandwich Plates in Complex Bending
下载PDF
导出
摘要 夹层板结构被广泛用于舰船和海洋工程,其结构在复杂弯曲状态下的极限强度能够反映其在面内载荷与面外载荷共同作用下的承载极限,因此,复杂弯曲极限强度对于夹层板结构的安全性能评估越来越重要。通过夹层板结构在初始弯曲状态下的轴向压缩试验和数值模拟,分别得到其载荷位移曲线,并分析该夹层板的极限强度特性。结果表明:在轴向压缩载荷达到极限载荷前,夹层板的轴向位移增长缓慢,一旦超过极限强度,结构的承载能力迅速降低,并伴随着位移的缓慢增长直至夹层板开裂破坏;夹层板的主要破坏模式为蒙皮与芯材分层以及芯材压缩破坏;数值计算结果与试验结果吻合较好,可用于指导夹层板结构设计。 With the wide application of sandwich structure in vessels and off-shore engineering applica-tions, the ultimate strength of the structure in complex bendings reflects the extreme bearing load under in-plane loads and lateral loads, and it becomes increasingly important for the safety assessment of sand-wich structures. In this paper, the load-displacement curve is obtained through experiment and numerical simulation of sandwich plates under axial compressive loads with initial bending, which is the basis in ana-lyzing the characteristic of ultimate strength. It is observed that the axial displacement of sandwich plates under axial compressive loads and lateral loads increases slowly before reaching the limit, but the bearing capacity of the structure decreases rapidly once the load exceeds the ultimate load, with the slow increment of axial displacement until the sandwich plate cracks; the major failure modes are delamination between core and skin and skin compressive fracture;good agreement is achieved between the numerical result and the experimental result, which offers a guide in designing sandwich structures.
作者 于耀 王伟
出处 《中国舰船研究》 2014年第3期76-82,共7页 Chinese Journal of Ship Research
基金 国家自然科学基金资助项目(51309065)
关键词 夹层板 复杂弯曲 极限强度 试验研究 复合材料 天线罩 sandwich plate complex bending ultimate strength experimental research composite ma-terial radome
  • 相关文献

参考文献20

  • 1JONES R M. Mechanics of composite materials [M]. Florida : CRC Press, 1998.
  • 2MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines [J]. Composite structures, 2001, 53(1): 21-42.
  • 3BENSON J L. The AEM/S system, a paradigm - break- ing mast, goes to sea [J]. Naval Engineers Journal, 1998, 110(4) : 99-103.
  • 4BOYD S W, BLAKE J I R, SHENOI R A, et al. Integ- rity of hybrid steel-to-composite joints for marine ap- plication [ J ]. Proceedings of the Institution of Mechani- cal Engineers, Part M: Journal of Engineering for the Maritime Environment, 2004, 218(4): 235-246.
  • 5HARBOE-HANSEN H. Norway's new Skjold class FPBs[J]. The Naval Architect, 1996(10) :54-55.
  • 6KALSφ HANSEN H. Technology, talent and toler- ance-the geography of the Creative Class in Sweden [ R ]. Lund University : Rapporter Och Notiser, 2007.
  • 7PETERSEN L J, HOFFMAN D J, BORRACCINI J P, et al. Next-generatlon power and energy: maybe not so next generation 1 [J]. Naval Engineers Journal, 2010, 122(4) : 59-74.
  • 8KUMAR S J A, AHMED K S. Compression behavior and energy absorption capacity of stiffened syntactic foam core sandwich composites [J]. Journal of Rein- forced Plastics and Composites, 2013, 32 (18) : 1370-1379.
  • 9KOH T M, ISA M D, FEIH S, et al. Experimental as- sessment of the damage tolerance of z-pinned T-stiff- ened composite panels [J]. Composites Part B: Engi- neering, 2013, 44( 1 ) : 620-627.
  • 10JI G, OUYANG Z, LI G. Debonding and impact toler- ant sandwich panel with hybrid foam core [J]. Com- posite Structures, 2013, 103: 143-150.

二级参考文献39

共引文献13

同被引文献31

  • 1王向阳,陈建桥,魏俊红.复合材料层合板的可靠性和优化问题的研究进展[J].力学进展,2005,35(4):541-548. 被引量:11
  • 2范华林,方岱宁.胞元材料拓扑构型与力学性能的相关性[J].清华大学学报(自然科学版),2007,47(11):2072-2075. 被引量:7
  • 3Vasiliev V V, Razin A F. Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Ap- plications[J]. Compos. Struct. , 2006, 76: 182- 189.
  • 4Cai S Y, Xi J T. A Control approach for Pore Size Distribution in the Bone Scaffold Based on the Hex- ahedral Mesh Refinement[J]. Computer-Aided De- sign, 2008,40: 1040-1050.
  • 5David W R. Computer-Aided Design for Additive Manufacturing of Cellular Structures[J]. Computer -Aided Design and Applications, 2007, 4: 585-594.
  • 6Dede E M, Hulbert G M. Computational Analysis and Design of Lattice Structures with Integral Com- pl.iant Meehanisms[J]. Finite Elem. Anal. Des. , 2008, 44:819-830.
  • 7Ushijima K, CantwelI W J, Chen D H. Prediction of the Mechanical Properties of Micro-lattice Struc- tures Subjected to Multi-axial Loading[J]. Int. J. Mech. Sci. , 2013, 68: 47-55.
  • 8Tekoglu C, Gibson L J, Pardoen T, et al. Size Effects in Foams: Experiments and Modeling[J]. Prog. Mater. Sci. , 2011, 56(2): 109-138.
  • 9Fang D N, Cui X D, Zhang Y H, et al. Mechani- cal Properties and Design of Lattice Composites and Structures[C]//Zhao H, Fleck N A. IUTAM Symposium on Mechanical Properties of Cellular Materials. Netherlands.. Springer, 2009.. 9-18.
  • 10VINSON J R, SIERAKOWSKI R L. The behavior of structures composed of composite materials[M]. Neth- erlands : Springer, 1980 : 302-315.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部