期刊文献+

考虑艇体变形影响的轴系合理校中 被引量:2

Rational Shafting Alignment of Submersible Vehicle Considering Hull Deformations
下载PDF
导出
摘要 为提高潜器推进轴系校中计算的准确度,使计算结果与实际情况更为接近,必须考虑艇体变形对轴承变位的影响,并将其作为轴系校中计算的初始边界条件。通过三维有限元计算,分析模型潜器的整艇湿表面结构在重力和水压作用下的变形情况,由此获得艇体艉部的结构变形数据。提出"共线程度"的概念和计算方法,将艇体结构变形数据转化为轴系各轴承相对变位数据,作为潜器推进轴系合理校中计算轴承的初始变位。利用轴系合理校中计算程序,在考虑艇体变形和轴承刚度的条件下,对模型潜器的轴系布置进行优化计算。结果表明:安装时,1#、2#、3#轴承位于理论中心线上,4#轴承变位为理论中心线向上0.4 mm能够获得合理的轴系校中状态。 To increase the accuracy of the calculation results of submersible vehicle propulsion shafting alignment and make it much closer to the actual situation, the hull deformation, which serves as the bound-ary condition of shafting alignment calculation, should be considered. Through 3D finite element analysis of hull deformation under the condition of hydrostatic stress and gravity, this paper analyzes the stern hull structure deformation. A notation and calculation method of“alignment degree”is presented, which con-verts the hull deformation to the bearing offset, which is the initial value of shafting system alignment. With the shafting system alignment program, the shaft arrangement optimization is conducted on a model sub-mersible vehicle, taking hull deformation and bearing stiffness into account. The results show that when bearing No.1, No.2, and No.3 are on the zero offset, and bearing No.4 0.4 mm being above the line, satisfy-ing shaft alignment situation can be achieved.
作者 毛卫
机构地区 海军装备部
出处 《中国舰船研究》 2014年第3期83-87,98,共6页 Chinese Journal of Ship Research
关键词 潜器 轴系合理校中 艇体变形 静水压力 submersible vehicle rational shafting alignment hull deformation hydrostatic stress
  • 相关文献

参考文献9

二级参考文献11

  • 1王西丁,钟涛,武玉增.船体变形对轴系校中的影响与分析[J].上海造船,2005(2):61-63. 被引量:14
  • 2王贤峰,周继良,曾庆健.螺旋桨水动力对轴系校中影响的研究[J].武汉水运工程学院学报,1994,18(1):105-110. 被引量:7
  • 3耿厚才,王万华.巨型油轮轴系校中模型分析[J].船舶工程,2007,29(1):17-19. 被引量:13
  • 4刘惟信.机械最优化设计[M].北京:清华大学出版社,1995.115-119,189-193.
  • 5American Bureau of Shipping. Guidance notes on propulsion shafting alignment [EB/OL]. [2008-02-19 ]. http://www, eagle, org/eagleExternalPortalWEB/ appmanager/absEagle/absEagleDesktop? _ nfpb = true&_pageLabel = abs eagle_portal rules guides_ download_page&category= All.
  • 6MURAWSKI L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration [J]. Marine Structures, 2005, 18(1) :62-84.
  • 7Nippon Kaiji Kyokai. Guidelines on shafting alignment [EB/OL]. [2008-02-19]. http://www. classnk, or. jp/hp/Publications/Publications_image/ Guidelines on Shafting_Alignment. pdf.
  • 8Mann G. Analysis of shafting problems using fair curve alignment theory[J]. Naval Engineers Journal, 1965,(February):117-133.
  • 9Reeves D and Vlahopoulos N. Optimized alignment of a USCG polar class ice breaker wing shaft using a distributed bearing finite-element model[J]. Marine Technology, 1999,36(4) :238-247.
  • 10Murawski L. Influence of journal bearing modeling method on shaft line alignment and whiling vibration[A]. Proc. PRADS[C]. Shanghai, 2001. 1205-1211.

共引文献49

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部