期刊文献+

Stationary Solutions for a Generalized Kadomtsev-Petviashvili Equation in Bounded Domain

Stationary Solutions for a Generalized Kadomtsev-Petviashvili Equation in Bounded Domain
下载PDF
导出
摘要 In this work, we are mainly concerned with the existence of stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain of Rn. We utilize variational method and critical point theory to establish our main results. In this work, we are mainly concerned with the existence of stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain of Rn. We utilize variational method and critical point theory to establish our main results.
出处 《Communications in Mathematical Research》 CSCD 2014年第3期273-283,共11页 数学研究通讯(英文版)
基金 The NSF(10971046 and 11371117) of China the Shandong Provincial Natural Science Foundation(ZR2013AM009) GIIFSDU(yzc12063) IIFSDU(2012TS020) the Project of Shandong Province Higher Educational Science and Technology Program(J09LA55)
关键词 generalized Kadomtsev-Petviashvili equation stationary solution criticaI point theory variational method generalized Kadomtsev-Petviashvili equation, stationary solution, criticaI point theory, variational method
  • 相关文献

参考文献1

二级参考文献11

  • 1Isaza P, Mejla J. Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-Ⅱ) equation in Sobolev spaces of negative indices. Comm Partial Differential Equations, 2001, 26(5/6): 1027-1054.
  • 2Bourgain J. On the Cauchy problem for the Kadomtsev-Petviashvili equation. Geom Funct Anal, 1993, 3(4): 315-341.
  • 3De Bouard A, Saut J C. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann Inst H Poincar@ Anal Non Lineaire, 1997, 14(2): 211-236.
  • 4Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincar~ Anal Non Lin~aire, 1984, 1(2, 4): 109-145; 223-283.
  • 5Willem M. Minimax Theorems. Progress in nonlinear differential equations and their applications. Boston: Birkhauser Boston, 1996.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence: American Mathematical Soc, 1986.
  • 7Wang Z, Willem M. A multiplicity result for the generalized Kadomtsev-Petviashvili equation. Topol Methods Nonlinear Anal, 1996,7(2): 261-270.
  • 8Xuan B. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Rev Colombiana Mat, 2003, 37(1): 11-23.
  • 9Ding W, Ni W. On the existence of positive entire solutions of a semilinear elliptic equation. Arch Rational Mech Anal, 1986, 91(4): 283-308.
  • 10Besov O V, II'in V P, Nikol'skilS M. Integral Representations of Functions and Imbedding Theorems. Vol I. Washington D C: V H Winston &= Sons, 1978.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部