期刊文献+

利用双目视觉视频的实时三维裸手手势识别 被引量:11

Real-time 3D bare-hand gesture recognition using binocular vision videos
下载PDF
导出
摘要 为了解决三维裸手手势识别算法识别率低、易受类肤色物体干扰的问题,提出一种利用双目视觉视频的三维裸手手势识别算法.首先依据双目视觉原理推导出三维空间内手势深度与手势面积的关系,基于此关系对三维手势进行快速识别.为进一步降低算法复杂度,根据极线约束规则提出一种只计算手势质心匹配点的立体匹配算法.实验结果表明,与现有算法相比,所提算法性能在处理速度、识别准确率、鲁棒性方面均有明显提高.同时,提出的算法具有较强的开放性,可进一步根据需求定义、添加需识别的三维手势. Current bare-hand based gesture recognition algorithms generally have the problems of low recognition accuracy and being prone to be affected by skin-like objects.In this paper,a 3D bare-hand gesture recognition algorithm is proposed using binocular vision videos.Firstly,a relationship between the depth and area of the gesture is achieved according to the principle of binocular vision,on the basis of which fast 3D gesture recognition is realized.To further speed up the method,a fast stereo matching algorithm is proposed following the epipolar line constraint rule,which regards the gesture’s centroid as the matching point.Experimental results have demonstrated that compared with existing algorithms the proposed algorithm significantly improves the performance in processing speed, recognition accuracy, and robustness.It should be noted that the proposed algorithm is open,where more 3D gestures can be easily added upon requirement.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第4期130-136,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61371089)
关键词 手势识别 双目视觉 立体匹配 极线约束 gesture recognition binocular vision stereo matching epipolar line constraint
  • 相关文献

参考文献17

  • 1马英红,杨家玮,惠蕾放,李烨,MAO Zhihong,SUN Mingui.一种新颖的手部运动跟踪系统[J].西安电子科技大学学报,2012,39(1):79-85. 被引量:1
  • 2Kumar P,Rautaray S S,Agrawal A.Hand Data Glove:a New Generation Real-time Mouse for Human-computer Interaction[C]//Proceedings of IEEE International Conference on Recent Advances in Information Technology.Piscataway:IEEE,2012:750-755.
  • 3Han Y M.A Low-cost Visual Motion Data Glove as an Input Device to Interpret Human Hand Gestures[J].IEEE Transactions on Consumer Electronics,2010,56(2):501-509.
  • 4Murthy G R S,Jadon R S.Hand Gesture Recognition Using Neural Network[C]//Proceedings of 2010 IEEE 2nd International Advance Computing Conference.Piscataway:IEEE,2010:134-138.
  • 5Varkonyi K A R,Tusor B.Human-computer Interaction for Smart Environment Applications Using Fuzzy Hand Posture and Gesture Models[J].IEEE Transactions on Instrumentation and Measurement,2011,60(5):1505-1514.
  • 6Yun L,Peng Z.An Automatic Hand Gesture Recognition System Based on Viola-jones Method and SVMs[C]//Proceedings of International Workshop on Computer Science and Engineering.Piscataway:IEEE,2009:72-76.
  • 7Qing C,Georganas N D,Petriu E M.Real-time Vision-based Hand Gesture Recognition Using Haar-like Features[C]//Proceedings of IEEE International Conference on Instrumentation and Measurement Technology.Piscataway:IEEE,2007:1-6.
  • 8Sohn M K,Lee S H,Kim D J,et al.3D Hand Gesture Recognition from One Example[C]//Proceedings of IEEE International Conference on Consumer Electronics.Piscataway:IEEE,2013:171-172.
  • 9Sato Y,Saito M,Koike H.Real-time Input of 3D Pose and Gestures of a User's Hand and Its Applications for HCI[C]//Proceedings of Virtual Reality Annual International Sympoisium.Piscataway:IEEE,2001:79-86.
  • 10向登宁,邓文怡,燕必希,董明利,吕乃光.利用极线约束方法实现图像特征点的匹配[J].北京机械工业学院学报,2002,17(4):21-25. 被引量:14

二级参考文献50

  • 1Mao Z H, Lee H N, Sclabassi R J, et al. Information Capacity of the Thumb and the Index Finger in Communication[J]. IEEE Trans on Biomedical Engineering, 2009, 56(5) : 1535-1545.
  • 2Wu Y, Lin J Y, Huang T S. Capturing Natural Hand Articulation [C]//Proceedings of IEEE International Conference on Computer Vision (ICCV01) : Vol 2. Vancouver: IEEE, 2001 : 426-432.
  • 3Won D, Lee H G, Kim J Y, et al. Development of a Wearable Input Device Based on Human Hand-motions Recognition [C]//Proceedings of IEEE/RS International Conference on Intelligent Robots and Systems. Sendai: IEEE, 2004: 1636-1641.
  • 4.Garg P, Aggarwal N, Sofat S. Vision Based Hand Gesture Recognition [J]. World Academy of Science, Engineering and Technology, 2009, 49: 972-977.
  • 5Ho M F, Tseng C Y, Lien C C, et al. A Multi-view Vision-based Hand Motion Capturing System [J]. Pattern Recognition, 2011, 44(2): 443-453.
  • 6Vaezi M, Nekouie M A. 3D Human Hand Posture Reconstruction Using a Single 2D Image [J]. International Journal of Human Computer Interaction, 20tl, 1(4): 83-94.
  • 7Hu C, Meng M Q H, Mandal M. A Linear Algorithm for Tracing Magnetic Position and Orientation By Using Three- axis Magnetic Sensors[J]. IEEE Trans on Magnetics, 2007, 43(12) : 4096-4101.
  • 8Lin J, Wu Y, Huang T S. Modeling the Constraints of Human Hand Motion [C]//Proceedings Workshop on Human Motion. Los Alamitos: IEEE, 2000: 121-126.
  • 9Wang J, Huo X, Ghovanloo M. A Quadratic Particle Swarm Optimization Method for Magnetic Tracking of Tongue Motion in Speech Disorders [C]//IEEE International Conference on Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008: 4222.
  • 10Baillet S, Mosher J C, Leahy R M. Electromagnetic Brain Mapping [J]. IEEE Signal Processing Magazine, 2001, 18 (6) : 20-21.

共引文献41

同被引文献87

引证文献11

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部