期刊文献+

Convex hull of set in thick part of Teichmller space

Convex hull of set in thick part of Teichmller space
原文传递
导出
摘要 Let X be a non-elementary Riemann surface of type(g,n),where g is the number of genus and n is the number of punctures with 3g-3+n>1.Let T(X)be the Teichmller space of X.By constructing a certain subset E of T(X),we show that the convex hull of E with respect to the Teichmller metric,the Carathodory metric and the Weil-Petersson metric is not in any thick part of the Teichmler space,respectively.This implies that convex hulls of thick part of Teichmller space with respect to these metrics are not always in thick part of Teichmller space,as well as the facts that thick part of Teichmller space is not always convex with respect to these metrics. Let X be a non-elementary Riemann surface of type(g,n),where g is the number of genus and n is the number of punctures with 3g-3+n1.Let T(X)be the Teichmller space of X.By constructing a certain subset E of T(X),we show that the convex hull of E with respect to the Teichmller metric,the Carathodory metric and the Weil-Petersson metric is not in any thick part of the Teichmler space,respectively.This implies that convex hulls of thick part of Teichmller space with respect to these metrics are not always in thick part of Teichmller space,as well as the facts that thick part of Teichmller space is not always convex with respect to these metrics.
出处 《Science China Mathematics》 SCIE 2014年第9期1799-1810,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11271378,11071179 and 10871211)
关键词 Carathéodory metric Teichmuller metric Weil-Petersson metric convex hull Dehn twist 空间 凸包 度量和 黎曼面 LER 厚度
  • 相关文献

参考文献24

  • 1Brock J. The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J Amer Math Soc, 2003,16: 495-535.
  • 2Brock J, Masur H, Minsky Y. Asymptotics of Weil-Petersson geodesics I: Ending laminations, recurrence, and flows.Geom Funct Anal, 2010, 19: 1229-1257.
  • 3Fenchel W, Nielsen J. Discontinuous groups of non-Euclidean motions. Unpublished manuscript. Berkeley, CA:University of California, 1948.
  • 4Gardiner F P. Teichmüller Theory and Quadratic Differentials. New York: John Wiley & Sons, 1987.
  • 5Hamenst?dt U. Stability of quasi-geodesics in Teichmüller space. Geom Dedicata, 2010, 146: 101-116.
  • 6Imayoshi Y, Taniguchi M. An Introduction to Teichmüller Space, Translated and Revised from the Japanese by theAuthors. Tokyo: Springer-Verlag, 1992.
  • 7Keen L. Intrinsic moduli on Riemann surfaces. Ann Math, 1966, 84: 404-420.
  • 8Kerckhoff S P. The asymptotic geometry of Teichmüller space. Topology, 1980, 19: 32-42.
  • 9Kobayashi S. Hyperbolic Manifolds and Holomorphic Mappings. New York: Marcel Dekker, 1970.
  • 10Kra I. The Carathéodory metric on Abelian Teichmüller disks. J d'Analyse Math, 1981, 40: 129-143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部