期刊文献+

A priori bounds for a class of semi-linear degenerate elliptic equations

A priori bounds for a class of semi-linear degenerate elliptic equations
原文传递
导出
摘要 In this paper,we mainly discuss a priori bounds of the following degenerate elliptic equation,a^ ij(x)δij u+b^ i(x)δiu+f(x,u)=0,in Ω belong to belong toR^n,(*)where a^ijδiφδjφ=0 on δΩ,andφis the defining function of δΩ.Imposing suitable conditions on the coefficients and f(x,u),one can get the L^∞-estimates of(*)via blow up method. In this paper,we mainly discuss a priori bounds of the following degenerate elliptic equation,a ij(x)■ij u+b i(x)■iu+f(x,u)=0,in ΩRn,(*)where aij■iφ■jφ=0 on■Ω,andφis the defining function of ■Ω.Imposing suitable conditions on the coefficients and f(x,u),one can get the L∞-estimates of(*)via blow up method.
出处 《Science China Mathematics》 SCIE 2014年第9期1911-1926,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11131005)
关键词 degenerate elliptic equations CHARACTERISTIC semi-linear elliptic equations 退缩椭圆型方程 先验界 半线性 退化椭圆方程 n次方 系数和 估计
  • 相关文献

参考文献11

  • 1Caffarelli L A, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with criticalSobolev growth. Comm Pure Appl Math, 1989, 42: 271-297.
  • 2Fichera G. Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad Naz Lincei Mem ClSci Fis Mat Nat Sez I, 1956, 5: 1-30.
  • 3Fichera G. On a unified theory of boundary value problems for elliptic-parabolic equations of second order. In:Boundary Problems in Differential Equations. Madison, WI: University of Wisconsin Press, 1960, 97-120.
  • 4Giaquinta M. Introduction to Regularity Theory for Nonlinear Elliptic Systems. Basel: Birkh¨auser, 1993.
  • 5Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure ApplMath, 1981, 34: 525-598.
  • 6Gidas B, Spruck J. A priori bounds for positive solutions of nonlinear elliptic equations. Comm Partial DifferentialEquations, 1981, 6: 883-901.
  • 7Hong J X. On boundary value problems for mixed equations with characteristic degenerate surfaces. Chin Ann Math,1981, 2: 407-424.
  • 8Hong J X, Huang G G. Lp and H?lder estimates for a class of degenerate elliptic partial differential equations and itsapplications. Int Math Res Not, 2012, 2012: 2889-2941.
  • 9Huang G G. A Liouville theorem of degenerate elliptic equation and its application. Discrete Contin Dyn Syst Ser A,2013, 33: 4549-4566.
  • 10Keldy? M V. On certain cases of degeneration of equations of elliptic type on the boundary of a domain. Dokl AkadNauk SSSR, 1951, 77: 181-183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部