摘要
介绍了经典非局部均值滤波算法与Manjon非局部均值滤波算法,改进了非局部均值滤波方法的相似度权值,使算法在具有旋转平移不变性,保持时间复杂度的同时优化了视觉效果与信噪比。实验通过添加噪声标准差从10~100不等的高斯加性噪声,比较了改进后的算法与传统滤波算法以及Manjon非均值滤波算法,结果表明,改进后的算法无论从视觉上还是数值上都优于Manjon非均值滤波算法。
We introduce the classical non-local means filtering algorithm and the improved non-local means filtering algorithm with the weight function modified by Manj on.In this paper, we propose different weight function , and make it have rotating shift invariance for the local windows while keeping the time complexity of opti -mizing the visual effect and SNR .By adding noise standard deviation from Gaussian additive noise ranging from 10 to 100 , we compare the improved algorithms with traditional filtering algorithms and Manj on non-mean filtering algorithm.The results show that the improved algorithm from either visual or numerical is superior to Manjon non-mean filtering algorithm .
出处
《中国光学》
EI
CAS
2014年第4期572-580,共9页
Chinese Optics
基金
国家自然科学基金资助项目(No.61271366
No.61170170
No.61003134
No.61170203)
中央高校基本科研业务费专项基金资助项目(No.2012LYB49)
北京市科技支撑资助项目(No.Z131110000613062)
关键词
医学图像降噪
脑血管
非局部均值滤波
medical image de-noising
cerebrovascular
non-local means filter(NLM)