摘要
Siberian Pine (Pinus sibirica) is an ecologically and eco-nomically important species in pristine forests throughout northern Rus-sia. Four provenances of P. sibirica were introduced from Mongolia and Russia to the Greater Xing’an Range (the Daxing’anling), northeast China in 1993. The aim of this research was to study genetic variation and selection of the introduced four Pinus sibirica provenances. Heights (H), basal diameters (BD), survival rates (SR) and crown lengths (CL) of different families were measured as primary outcomes in different growth years. Results of data analyses demonstrated high coefficients of phenotypic variation (PCV) and heritability (H2) for H, BD and CL at 18 years after introduction. PCV and H2 increased with age. Correlations of growth traits between any two growth years were all significantly positive, but the correlation coefficient was smaller when the growth year interval was larger. Correlations between H and the original environment factors decreased gradually, indicating that with long-term subsistence in the new environment, the influence of the source environment declined. Colligation of multiple traits to estimate provenances showed that Novosibirsk, Tomsk, and Altai Mountains had higher survival rates and biomass, and proved more suitable for introduction and plantation in the Greater Xing’an Range in China.
Siberian Pine (Pinus sibirica) is an ecologically and eco-nomically important species in pristine forests throughout northern Rus-sia. Four provenances of P. sibirica were introduced from Mongolia and Russia to the Greater Xing’an Range (the Daxing’anling), northeast China in 1993. The aim of this research was to study genetic variation and selection of the introduced four Pinus sibirica provenances. Heights (H), basal diameters (BD), survival rates (SR) and crown lengths (CL) of different families were measured as primary outcomes in different growth years. Results of data analyses demonstrated high coefficients of phenotypic variation (PCV) and heritability (H2) for H, BD and CL at 18 years after introduction. PCV and H2 increased with age. Correlations of growth traits between any two growth years were all significantly positive, but the correlation coefficient was smaller when the growth year interval was larger. Correlations between H and the original environment factors decreased gradually, indicating that with long-term subsistence in the new environment, the influence of the source environment declined. Colligation of multiple traits to estimate provenances showed that Novosibirsk, Tomsk, and Altai Mountains had higher survival rates and biomass, and proved more suitable for introduction and plantation in the Greater Xing’an Range in China.
基金
supported by grants Seedling Technology Rules of Siberia pine(No.2012-LY-183)