期刊文献+

页岩储集层微观渗流的微尺度效应 被引量:22

Microscale effect of microvadose in shale reservoirs
下载PDF
导出
摘要 页岩有机质中存在大量纳米孔隙,气体在纳米孔隙中的流动存在微尺度效应,宏观流体流动规律难以准确描述其流动行为。考虑气体分子在有机质孔隙中的滑脱效应、扩散和吸附解吸作用,用格子Boltzmann方法模拟气体在有机质纳米孔道中的流动。结果表明:气体在有机质纳米孔道中存在压缩效应,压缩效应导致压力沿纳米孔道呈非线性分布,且孔道两端的压差越大,非线性程度越大。随着Knudsen数增大,稀薄效应增强,减弱了由压缩效应引起的非线性程度。气体在纳米孔道中的边界滑移速度随着进出口压力比和Knudsen数的增大而增大,并且在垂直于孔道方向上的速度不为零,加剧了孔道中气体分子与边界分子的动能交换。滑移效应和吸附解吸效应均对气体在页岩有机质孔道中的质量流量有重要影响。 Gas flow in nano-pores which are abundant in the organic matter of shale can lead to micro-scale effect that can't be described by flowing law of macro fluid. The Lattice Boltzmarm Method was applied to simulate gas flow in the nano-channels of organic matter and to investigate the slippage effect, diffusion effect and adsorption/desorption effect. The simulation result shows that the compressibility effect of gas leads to the nonlinear pressure distribution along the channels, and the larger the pressure difference, the more serious the nonlinear distribution. To some extent, the enhancement of rarefaction effect weakens nonlinear degree caused by the compressibility effect. With the increase of Knudsen number and the pressure differential on the two ends, the slip velocity on the boundary increases, and the velocity vertical to the channel is not zero, increasing the exchange of kinetic energy between gas molecules in channels and molecules at boundary. Slippage effect and adsorption/desorption effect have a significant contribution to the gas mass flow in nano-channels of organic matter.
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2014年第4期445-452,共8页 Petroleum Exploration and Development
基金 国家自然科学基金项目"页岩气储层吸附解吸机理研究"(51274214) 教育部科学技术研究重大计划"页岩气流动机理与产能预测模型研究"(311008) 教育部博士点基金项目"页岩储层多尺度耦合渗流规律研究"(20120007110012)
关键词 有机质 纳米孔隙 格子BOLTZMANN方法 微尺度效应 边界滑移速度 organic matter nanopore Lattice Boltzmarm Method micro-scale effect boundary slip velocity
  • 相关文献

参考文献28

  • 1陈新军,包书景,侯读杰,毛小平.页岩气资源评价方法与关键参数探讨[J].石油勘探与开发,2012,39(5):566-571. 被引量:54
  • 2邹才能,朱如凯,白斌,杨智,吴松涛,苏玲,董大忠,李新景.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864. 被引量:494
  • 3Sondergeld C H, Ambrose R J, Rai C S, et al. Micro-structural studies of gas shales JR]. SPE 131771, 2010.
  • 4白斌,朱如凯,吴松涛,杨文静,Jeff Gelb,Allen Gu,张响响,苏玲.利用多尺度CT成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333. 被引量:167
  • 5Roy S, Raju R, Cbuang H F, et al. Modeling gas flow through microchanncls and nanoporcs[J]. Journal of Applied Physics, 2003, 93(8): 4870-4879.
  • 6Guo Zhaoli, Zhao T S, Shi Yong. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows[J]. Journal of Applied Physics, 2006, 99: 074903-1-074903-8.
  • 7Sofonea V, Sekerka R F. Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow[J]. Journal of Computational Physics, 2005, 207(2): 639-629.
  • 8Lee T, Lin C L. A characteristic Galerkin method for discret Boltzmann equation[J]. Journal of Computational Physics, 2001,171(1): 336-356.
  • 9Zhang Yonghao, Qin Rongshan, Emerson D R. Lattice Boltzmann simulation of rarefied gas flows in microchannels[J]. Physical Review E, 2005, 71(4): 47702.
  • 10Arkilic E B, Schmidt M A, Breuer K S. Gaseous slip flow in long microclaannels[J]. Journal of Microelectromeehanieal System, 1997, 6(2): 167-178.

二级参考文献102

共引文献917

同被引文献263

引证文献22

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部