期刊文献+

一种基于主成分分析的支持向量机集成算法

下载PDF
导出
摘要 现实生活中普遍存在冗余属性数据集,传统的支持向量机(SVM)集成分类方法需要耗费更多的时间进行运算,而且分类性能不够理想。针对传统支持向量机集成算法的不足,本文提出了一种基于主成分分析的SVM集成算法,该算法首先使用主成分分析进行主成分提取,去除冗余属性。然后在精简后的数据集上进行SVM集成学习。在部分UCI标准数据集上的实验说明本文算法可以有效地提高分类算法的性能。
作者 朱孟杰
出处 《消费电子》 2014年第12期121-121,123,共2页 Consumer Electronics Magazine
  • 相关文献

参考文献6

  • 1Duda 1 O,Hart P E,Stork D G.Patternclassification,Wiley,second edition edition,2001.
  • 2王正群,陈世福,陈兆乾.并行学习神经网络集成方法[J].计算机学报,2005,28(3):402-408. 被引量:36
  • 3Valiant L G.A theory of the leamable[J].Communications of the ACM,1984(11):1134-1142.
  • 4Hsu CW,Lin CJ.A comparison on methods for multi- class support vector machines.IEEE Transactions on Neural Networks,2001 (02):415-425.
  • 5Kohavi R..A study of cross-validation and bootstrap for accuracy estimation and model selection.In:Wermter S,Rilof E,Scheler G,eds.Proc.14th Joint Int.ConArtificial Intelligence.San Mateo,CA:Morgan Kaufmann,1995:1137-1145.
  • 6HanJW,KamberM.范明,译.DataMiningConceptsandTechniques[M].北京:机械工业出版社,2001:257-259.

二级参考文献12

  • 1Solice P., Krogh A.. Learning with ensembles: How over-Fiting can be useful. In: Touretzky D., Mozer M., Hasselmo M. eds.. Advances in Neural Information Processing Systems, 1995, 7: 231~238.
  • 2Schapire R.E.. The strength of weak learnability. Machine Learning, 1990, 5(2): 197~227.
  • 3Friedman L.. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 4Jang M., Cho S.. Observational learning algorithm for an ensemble of neural networks. Pattern Analysis & Applications, 2002, 5: 154~167.
  • 5Zhou Z.-H., Wu J.-X., Tang W.. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1~2): 239~263.
  • 6Zhou Z.-H., Wu J.-X., Tang W., Chen Z.-Q.. Combining regression estimator: GA-based selective neural network Ensemble. International Journal of Computational Intelligence and Applications, 2001, 1(4): 341~356.
  • 7Perrone M.P., Cooper L.N.. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. eds.. Artificial Neural Networks for Speed and Vision, New York: Chapman & Hall, 1993, 126~142.
  • 8Opitz D., Shavlik J.. Actively searching for an efficient neural network ensemble. Connection Science, 1996, 8(3~4): 337~353.
  • 9Krogh A., Vedelsby J.. Neural network ensembles, cross validation, and active learning. In: Touretzky D., Leen T. eds.. Advance in Neural Information Processing Systems &, Cambridge, MA: MITPress, 1995, 231~238.
  • 10Ridgeway G., Madigan D., Richardson T.. Boosting methodology for regression problems. In: Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics, Fort Lauderdale, FL, 1999, 152~161.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部