期刊文献+

基于探针定位的原子力显微镜纳米操作虚拟夹具实现 被引量:3

Implementation of Virtual Clap Based AFM Nanomanipulation Through Tip Positioning
下载PDF
导出
摘要 尽管基于原子力显微镜(Atom force microscopy,AFM)的纳米操作在过去10年间取得了极大进展,但依然有两个问题没有得到很好解决:探针的精确定位和稳定性操作。由于压电陶瓷驱动器非线性和温漂的影响,使得探针相对于被操作物体的定位极其困难,从而造成纳米操作任务失败;同时,因为探针仅能对被操作物体施加点式作用力,在操作中经常出现探针滑过被操作物体,或者引起被操作物体的转动、形变等非理想结果,阻碍纳米操作的深入发展。针对上述问题,提出基于概率的虚拟夹具纳米操作方法,其核心思想是在基于路标观测的探针定位基础上,实现基于概率的探针多点并发操作策略—虚拟夹具方法。仿真与试验结果验证该方法可以稳定、长距离的推动纳米颗粒,能够对一维纳米材料(管、线、棒)进行定姿态操作,从而使AFM纳米操作效率得到极大提升。 Although atom force microscopy (AFM) based nanomanipulation has made a great progress during these ten years,the two problems are not primely solved as following:accurate positioning and stable maneuvering.Due to the nonlinearity of PbZrTiO3(PZT) driver and system thermal drift,the tip is difficult to be positioned relative to the maneuvered object,which will lead to the nanomanipulation failure.At the same time,the tip can only exert a so called force point on the maneuvered object,which would cause the tip slip across the object,or rotate,deform the object and obtain other unexpected results.These non-idea results would hinder the further development of nanomanipulation.As for these abovementioned problems,the nanomanipulation strategy based on the probabilistic virtual clap is proposed.This kernel idea is that on the foundation of the tip positioning,the virtual clap method is implemented through multiple intercurrent maneuvers by using single AFM tip.Simulation and experimental results represents that the proposed method can stably push the nanoparticle in the long distance,and primarily validates the feasibility of maneuvering 1D nanomaterial (tube,wire,rod) with a certain fixed pose.These works would improve the efficiency ofAFM nanomanipulation.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第13期142-147,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(61305125 61175103) 国家博士后基金(2013M530955) 中国科学院 国家外国专家局创新团队国际合作伙伴计划资助项目
关键词 原子力显微镜 虚拟夹具 纳米操作 atom force microscopy virtual clap nanomanipulation
  • 相关文献

参考文献15

  • 1BINNING G,QUATE C,GERBER C.Atomic force microscopy[J].Phys.Rev.Lett.,1986,56:930-933.
  • 2李杨民,汤晖,徐青松,贠远.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13. 被引量:41
  • 3李东洁,荣伟彬,孙立宁,肖万哲,邹宇.基于虚拟3D视觉和力觉交互的SEM遥纳操作系统[J].机器人,2013,35(1):52-59. 被引量:5
  • 4FAHLBUSCH S,SHIRINOV A,FATIKOW S.AFM-based micro force sensor and haptic interface for a nanohandling robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems,2002:1772-1777.
  • 5JUNNO T,DEPPERT K,MONTELIUS L,et al.Controlled manipulation of nanoparticles with an atomic force microscope[J].Applied Physics Letters,1995,66(26):3627-3629.
  • 6M(U)LER M,FIEDLER T,GR(O)GER R,et al.Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching[J].Surface and Interface Analysis,2004,36(2):189-192.
  • 7LI Guangyong,XI Ning,YU Mengmeng,et al.Augmented reality system for real-time nanomanipulation[C]//IEEE-NANO,2003:64-67.
  • 8MOKABERI B,REQUICHA A.Compensation of scanner creep and hysteresis for AFM nanomanipulation[J].IEEE Transactions on Automation Science and Engineering,2008,5(2):197-206.
  • 9MOKABERI B,REQUICHA A.Drift compensation for automatic nanomanipulation with scanning probe microscopes[J].IEEE Transactions on Automation Science and Engineering,2006,3(3):199-207.
  • 10KROHS F,ONAL C,SITTI M,et al.Towards automated nanoassembly with the atomic force microscope:A versatile drift compensation procedure[J].Journal of Dynamic Systems,Measurement,and Control,2009,131(6):061106.

二级参考文献60

  • 1杜志江,董为,孙立宁.柔性铰链及其在精密并联机器人中的应用[J].哈尔滨工业大学学报,2006,38(9):1469-1473. 被引量:20
  • 2赵宏伟,吴博达,曹殿波,华顺明,程光明,杨志刚,曲兴田.直角柔性铰链的力学特性[J].纳米技术与精密工程,2007,5(2):143-147. 被引量:20
  • 3OUYANG P R,ZHANG W J,GUPTA M M,et al.Overview of the development of a visual based automated bio-micromanipulation system[J].Mechatronics,2007,17:578-588.
  • 4XU Qingsong,LI Yangmin,XI Ning.Design,fabrication,and visual servo control of an XY parallel micromanipulator with pizeo-actuation[J].IEEE Transactions on Automation Science and Engineering,2009,6(4):710-719.
  • 5PIEPMEIER A J,MCMURRAY V G,LIPKIN H.Uncalibrated dynamic visual servoing[J].IEEE Transactions on Robotics and Automations,2004,20(1):143-147.
  • 6WANG Hesheng,LIU Yunhui,ZHOU Dongxiang.Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera[J].IEEE Transactions on Robotics,2008,24(4):843-857.
  • 7NISHIO D,NAKAMURA M,KOMADA S,et al.Tracking of moving object by manipulator using estimated image feature and its error correction on image planes[C]//Advanced Motion Control,March 25-28,2004,Kawasaki,Japan.USA:IEEE,2004:653-657.
  • 8XIE Hui,SUN Lining,RONG Weibin,et al.Visual servoing with modified Smith predictor for micromanipulation tasks[C]// Proceedings of the IEEE International Conference on Mechatronics & Automation,July 30-August 1,2005,Niagara Falls,Canada.USA:IEEE,2005:71-76.
  • 9ZENG Xiangjin,HUANG Xinhan,WANG Min,et al.Visual servoing based on fuzzy adaptive PID with modified Smith predictor for micromanipulation[C]//Proceeding of the 2008 IEEE//ASME International Conference on Advanced Intelligent Mechatronics,July 2-5,2008,Xi'an,China.USA:IEEE,2008:290-295.
  • 10TANG Hui,LI Yangmin,ZHAO Xinhua.Hysteresis modeling and inverse feedforward control of an AFM piezoelectric scanner based on nano images[C]//Proceeding of the 2011 IEEE International Conference on Mechatronics and Automation,August 7-10,2011,Beijing,China.USA:IEEE,2011:189-194.

共引文献44

同被引文献25

  • 1余家欣,钱林茂.一种改进的原子力显微镜摩擦力标定方法[J].摩擦学学报,2007,27(5):472-476. 被引量:6
  • 2Chen H P, Xi N, Li G Y,et al. Automated nano-assem-hly of nanoscale structures. In: Proceedings of the 2004 4th IEEE Conference on Nanotechnology, 2004. 465 -467.
  • 3Chen HP,Xi N, Li G Y,et al. CAD-guided manufacturing of nanostructures using naiiopaiiides. In: Proceed-ings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004. 595-600.
  • 4Li Y M , Tang H, Xu Q S, et al. Development status of nii(!romanipulator technology for biomedical applocations. Journal of Mechanical Engineering, 2011,47(23) : 1-13.
  • 5Liu Z G, Li Z, Wei G, et al. Manipulation, dissection, and lithography using modified tapping mode atomic force microscope. Microscopy Research and Technique, 2006, 69(12) :998-1004.
  • 6Xie H, Vitanl J,Haliyo D,et al. Enhanced accuracy of force application for AFM nanomanipulation using nonlinear calibration of optical levers. IEEE Sensors Journal, 2008, 8(8) : 1478 -1485.
  • 7Falvo M R, Taylor R M, Helser A, et al. Nanometer-scale rolling and sliding of carbon nanotubes. Nature1999,397:236-238.
  • 8Sitti M. Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE/ ASME transactions on mechatronics, 2004,9(2) :343-349.
  • 9Sitti M, Hashimoto H. Controlled pushing of nanoparticles: modeling and experiments. IEEE Transactions on Mechatronics,2000,5(2) : 199-211.
  • 10Tafazzoli A, Sitti M. Dynamic behavior and simulation ofIn: Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Anaheim, USA, 2004. 965-972.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部